def getInps(spl = 0.3, Topt = np.array([1])): inps = ld_obj('../data/inps_RCC') ys = inps[0]+inps[2] xs = inps[1]+inps[3] xs_demo = np.stack(elt[1] for elt in xs) inps_all = ld_obj('../data/inps') new_inps = [] for val in [1,3,5]: inds = [] for elt in inps_all[val]: locn = np.where(np.all(elt[1] == xs_demo,axis=1))[0] if locn.size == 1: inds.append(locn[0]) inds=np.array(inds) new_inps.append([bool(ys[elt]) for elt in inds]) new_inps.append([xs[elt] for elt in inds]) [trnLs, trnIms, tstLs, tstIms, valLs, valIms] = new_inps [tstImsF, tstLsF] = ld_obj('../data/inps_new_data_Fuhrman_cc.pkl') trnLs, trnIms = trnLs + tstLsF[:14], trnIms + tstImsF[:14] tstLs, tstIms = tstLs + tstLsF[14:28], tstIms + tstImsF[14:28] valLs, valIms = valLs + tstLsF[28:], valIms + tstImsF[28:] [tstImsI, tstLsI] = ld_obj('../data/inps_new_data_ISUP_cc.pkl') return trnLs, trnIms, tstLs, tstIms, valLs, valIms, tstLsI, tstImsI
def getInps(spl=0.3, Topt=np.array([1])): [trnLs, trnIms, tstLs, tstIms, valLs, valIms] = ld_obj('../data/inps') [tstImsF, tstLsF] = ld_obj('../data/inps_new_data_Fuhrman.pkl') trnLs, trnIms = trnLs + tstLsF[:14], trnIms + tstImsF[:14] tstLs, tstIms = tstLs + tstLsF[14:28], tstIms + tstImsF[14:28] valLs, valIms = valLs + tstLsF[28:], valIms + tstImsF[28:] [tstImsI, tstLsI] = ld_obj('../data/inps_new_data_ISUP.pkl') return trnLs, trnIms, tstLs, tstIms, valLs, valIms, tstLsI, tstImsI
model.summary() def with_substr(ls, sub_str): return [elt for elt in ls if sub_str in elt] data_list = os.listdir('.') input_hds = with_substr(data_list, '.hd') input_pkls = with_substr(data_list, '.pkl') #################### [trnIms, valIms, tstIms, trnLs, valLs, tstLs, trnDs, valDs, tstDs] = ld_obj(root + 'all_input_data') #trnLs, trnIms, tstLs, tstIms, valLs, valIms = getInps() x_train, y_train = trnIms[:, :, :, :, 0], trnLs x_val, y_val = valIms[:, :, :, :, 0], valLs x_tst, y_tst = tstIms[:, :, :, :, 0], tstLs x_train = np.stack([(im - np.mean(im)) / np.std(im) for im in x_train], axis=0) x_val = np.stack([(im - np.mean(im)) / np.std(im) for im in x_val], axis=0) x_tst = np.stack([(im - np.mean(im)) / np.std(im) for im in x_tst], axis=0) evl_tr = model.evaluate(x=x_train, y=y_train) print('train: ' + str(evl_tr)) evl_vl = model.evaluate(x=x_val, y=y_val) print('val: ' + str(evl_vl))
def getInps(spl=0.3, Topt=np.array([1])): [trnLs, trnIms, tstLs, tstIms, valLs, valIms] = ld_obj('../data/inps') return trnLs, trnIms, tstLs, tstIms, valLs, valIms
) ##just nav to directory data_list = os.listdir('.') for elt in data_list: print(elt[:3] == 'all') print(elt[3] != '_') print([elt for elt in data_list if ('all' == elt[:3] and (elt[3] != '_'))]) input_hds = with_substr(data_list, '.hd') input_pkls = with_substr(data_list, '.pkl') [ history, mn, s, x_train, y_train, x_val, y_val, x_tst, y_tst, pred1_tr, pred1_vl, pred1_ts ] = ld_obj( [elt for elt in data_list if ('all' == elt[:3] and (elt[3] != '_'))][0]) model = LR(x_train.shape[1], 2) chckptNm = with_substr(input_hds, 'all')[0] model.compile(optimizer=optim, loss='categorical_crossentropy', metrics=['accuracy']) model.load_weights(chckptNm) evl_tr = model.evaluate(x=x_train, y=y_train) print('train: ' + str(evl_tr)) evl_vl = model.evaluate(x=x_val, y=y_val) print('val: ' + str(evl_vl))