示例#1
0
文件: main.py 项目: preetam01/FEATHER
def main(args):
    """
    Characteristic function embedding wrapper.
    :param args: Arguments object parsed up.
    """
    if args.model_type == "FEATHER":
        print("\nFitting a node embedding.\n")
        graph = load_graph(args.graph_input)
        features = load_features(args.feature_input)
        model = FEATHER()
        model.fit(graph, features)
    elif args.model_type == "FEATHER-G":
        print("\nFitting a graph level embedding.\n")
        graphs = load_graphs(args.graphs_input)
        model = FEATHERG()
        model.fit(graphs)
    else:
        quit()
    X = model.get_embedding()
    save_embedding(X, args.output)
示例#2
0
    # exit()

    node_count_avg_ref, node_count_avg_pred = [], []
    edge_count_avg_ref, edge_count_avg_pred = [], []

    degree_mmd, clustering_mmd, orbit_mmd, nspdk_mmd = [], [], [], []
    node_label_mmd, edge_label_mmd, node_label_and_degree = [], [], []

    print(len(graphs_test_indices))
    for i in range(0, len(graphs_pred_indices), eval_args.metric_eval_batch_size):
        batch_size = min(eval_args.metric_eval_batch_size,
                         len(graphs_pred_indices) - i)

        graphs_ref_indices = random.sample(graphs_test_indices, batch_size)
        graphs_ref = load_graphs(
            train_args.current_dataset_path, graphs_ref_indices)

        graphs_ref = [patch_graph(g) for g in graphs_ref]

        graphs_pred = load_graphs(
            eval_args.current_graphs_save_path, graphs_pred_indices[i: i + batch_size])

        graphs_pred = [patch_graph(g) for g in graphs_pred]

        node_count_avg_ref.append(mean([len(G.nodes()) for G in graphs_ref]))
        node_count_avg_pred.append(mean([len(G.nodes()) for G in graphs_pred]))

        edge_count_avg_ref.append(mean([len(G.edges()) for G in graphs_ref]))
        edge_count_avg_pred.append(mean([len(G.edges()) for G in graphs_pred]))

        degree_mmd.append(metrics.stats.degree_stats(graphs_ref, graphs_pred))
    ))
    print(LINE_BREAK)


if __name__ == "__main__":

  node_count_avg_ref, node_count_avg_pred = [], []
  edge_count_avg_ref, edge_count_avg_pred = [], []

  degree_mmd, clustering_mmd, orbit_mmd, nspdk_mmd = [], [], [], []
  node_label_mmd, edge_label_mmd, node_label_and_degree = [], [], []
  graphs_pred_indices = range(2000)
  for i in range(0, len(graphs_pred_indices), 32):
      batch_size = min(32, len(graphs_pred_indices) - i)
      print(i)
      graphs_ref = load_graphs('dat_graphs/lung/', graphs_pred_indices[i:i+batch_size])
      graphs_ref = [patch_graph(g) for g in graphs_ref]

      graphs_pred = load_graphs('dat_graphs/yeast/', graphs_pred_indices[i:i+batch_size])
      graphs_pred = [patch_graph(g) for g in graphs_pred]

      node_count_avg_ref.append(mean([len(G.nodes()) for G in graphs_ref]))
      node_count_avg_pred.append(mean([len(G.nodes()) for G in graphs_pred]))

      edge_count_avg_ref.append(mean([len(G.edges()) for G in graphs_ref]))
      edge_count_avg_pred.append(mean([len(G.edges()) for G in graphs_pred]))
      # print("Edge count done")
      degree_mmd.append(metrics.stats.degree_stats(graphs_ref, graphs_pred))
      # print("Degree MMD done")
      clustering_mmd.append(
          metrics.stats.clustering_stats(graphs_ref, graphs_pred))