示例#1
0
def fill_params(expt_name, chkpt_num, batch_sz, gpus,
                sampler_fname, model_fname, augmentor_fname, **args):

    params = {}

    #Model params
    params["in_dim"]       = 1
    params["output_spec"]  = collections.OrderedDict(synapse_label=1)
    params["depth"]        = 4
    params["batch_norm"]   = True

    #Training procedure params
    params["max_iter"]    = 1000000
    params["lr"]          = 0.00001
    params["test_intv"]   = 100
    params["test_iter"]   = 10
    params["avgs_intv"]   = 50
    params["chkpt_intv"]  = 10000
    params["warm_up"]     = 50
    params["chkpt_num"]   = chkpt_num
    params["batch_size"]  = batch_sz

    #Sampling params
    params["data_dir"]     = os.path.expanduser("~/seungmount/research/Nick/datasets/SNEMI3D/")
    assert os.path.isdir(params["data_dir"]),"nonexistent data directory"
    params["train_sets"]   = ["K_val"]
    params["val_sets"]     = ["K_val"]
    params["patchsz"]      = (18,160,160)
    params["sampler_spec"] = dict(input=params["patchsz"], 
                                  synapse_label=params["patchsz"])

    #GPUS
    params["gpus"] = gpus

    #IO/Record params
    params["expt_name"]  = expt_name
    params["expt_dir"]   = "experiments/{}".format(expt_name)
    params["model_dir"]  = os.path.join(params["expt_dir"], "models")
    params["log_dir"]    = os.path.join(params["expt_dir"], "logs")
    params["fwd_dir"]    = os.path.join(params["expt_dir"], "forward")
    params["tb_train"]   = os.path.join(params["expt_dir"], "tb/train")
    params["tb_val"]     = os.path.join(params["expt_dir"], "tb/val")

    #Use-specific Module imports
    params["model_class"]   = utils.load_source(model_fname).Model
    params["sampler_class"] = utils.load_source(sampler_fname).Sampler
    params["augmentor_constr"] = utils.load_source(augmentor_fname).get_augmentation

    #"Schema" for turning the parameters above into arguments
    # for the model class
    params["model_args"]     = [params["in_dim"], params["output_spec"],
                                params["depth"]]
    params["model_kwargs"]   = {"bn" : params["batch_norm"]}

    #modules used for record-keeping
    params["modules_used"] = [__file__, model_fname, sampler_fname,
                              augmentor_fname, "loss.py"]

    return params
示例#2
0
def create_features(features):
    import timeit
    source = load_source()
    start = timeit.default_timer()
    compute_features(source, features)
    end = timeit.default_timer()
    print("save all features takes ", (end-start))
示例#3
0
def create_features(features):
    import timeit
    source = load_source()
    start = timeit.default_timer()
    compute_features(source, features)
    end = timeit.default_timer()
    print("save all features takes ", (end - start))
示例#4
0
def fill_params(expt_name, chkpt_num, gpus, nobn, model_name, dset_names, tag):

    params = {}

    #Model params
    params["in_dim"] = 1
    params["output_spec"] = collections.OrderedDict(soma_label=1)
    params["depth"] = 4
    params["batch_norm"] = not (nobn)
    params["activation"] = F.sigmoid
    params["chkpt_num"] = chkpt_num

    #GPUS
    params["gpus"] = gpus

    #IO/Record params
    params["expt_name"] = expt_name
    params[
        "expt_dir"] = "/jukebox/wang/zahra/conv_net/training/experiment_dirs/{}".format(
            expt_name)
    params["model_dir"] = os.path.join(params["expt_dir"], "models")
    params["log_dir"] = os.path.join(params["expt_dir"], "logs")
    params["fwd_dir"] = os.path.join(params["expt_dir"], "forward")
    params["log_tag"] = "fwd_" + tag if len(tag) > 0 else "fwd"
    params["output_tag"] = tag

    #Dataset params
    params[
        "data_dir"] = "/jukebox/wang/pisano/conv_net/annotations/all_better_res/h129/otsu/inputRawImages"
    assert os.path.isdir(params["data_dir"]), "nonexistent data directory"
    params["dsets"] = dset_names
    params["input_spec"] = collections.OrderedDict(
        input=(20, 192, 192))  #dp dataset spec
    params["scan_spec"] = collections.OrderedDict(soma_label=(1, 20, 192, 192))
    params["scan_params"] = dict(stride=(0.75, 0.75, 0.75), blend="bump")

    #Use-specific Module imports
    params["model_class"] = utils.load_source('models/RSUNet.py').Model

    #"Schema" for turning the parameters above into arguments
    # for the model class
    params["model_args"] = [
        params["in_dim"], params["output_spec"], params["depth"]
    ]
    params["model_kwargs"] = {"bn": params["batch_norm"]}

    #Modules used for record-keeping
    params["modules_used"] = [__file__, 'models/RSUNet.py', "layers.py"]

    return params
示例#5
0
def fill_params(expt_name, chkpt_num, gpus, nobn, model_fname, dset_names,
                tag):

    params = {}

    #Model params
    params["in_spec"] = dict(input=(1, 20, 192, 192))
    params["output_spec"] = collections.OrderedDict(soma=(1, 20, 192, 192))
    params["width"] = [32, 40, 80]
    params["activation"] = sigmoid
    params["chkpt_num"] = chkpt_num

    #GPUS
    params["gpus"] = gpus

    #IO/Record params
    params["expt_name"] = expt_name
    params[
        "expt_dir"] = "/jukebox/wang/zahra/conv_net/training/prv/experiment_dirs/{}".format(
            expt_name)
    params["model_dir"] = os.path.join(params["expt_dir"], "models")
    params["log_dir"] = os.path.join(params["expt_dir"], "logs")
    params["fwd_dir"] = os.path.join(params["expt_dir"], "forward")
    params["log_tag"] = "fwd_" + tag if len(tag) > 0 else "fwd"
    params["output_tag"] = tag

    #Dataset params
    params[
        "data_dir"] = "/home/wanglab/mounts/wang/zahra/conv_net/annotations/prv/hypothalamus/inputs"
    assert os.path.isdir(params["data_dir"]), "nonexistent data directory"
    params["dsets"] = dset_names
    params["input_spec"] = collections.OrderedDict(
        input=(20, 192, 192))  #dp dataset spec
    params["scan_spec"] = collections.OrderedDict(soma=(1, 20, 192, 192))
    params["scan_params"] = dict(stride=(0.5, 0.5, 0.5), blend="bump")

    #Use-specific Module imports
    params["model_class"] = utils.load_source(model_fname).Model

    #"Schema" for turning the parameters above into arguments
    # for the model class
    params["model_args"] = [
        params["in_spec"], params["output_spec"], params["width"]
    ]
    params["model_kwargs"] = {}

    #Modules used for record-keeping
    params["modules_used"] = [__file__, model_fname, "layers.py"]

    return params
示例#6
0
def fill_params(expt_name, chkpt_num, gpus, nobn, model_fname, dset_name, tag,
                jobid):

    params = {}

    #Model params
    params["in_spec"] = dict(input=(1, 20, 32, 32))
    params["output_spec"] = collections.OrderedDict(soma=(1, 20, 32, 32))
    params["width"] = [32, 40, 80]
    params["activation"] = sigmoid
    params["chkpt_num"] = chkpt_num

    #GPUS
    params["gpus"] = gpus

    #IO/Record params
    params["expt_name"] = expt_name
    params["expt_dir"] = "/tigress/zmd/3dunet_data/cfos/experiments/{}".format(
        expt_name)
    params["model_dir"] = os.path.join(params["expt_dir"], "models")
    params["log_dir"] = os.path.join(params["expt_dir"], "logs")
    params["fwd_dir"] = os.path.join(params["expt_dir"], "forward")
    params["log_tag"] = "fwd_" + tag if len(tag) > 0 else "fwd"
    params["output_tag"] = tag
    params["jobid"] = jobid

    #Dataset params
    params["data_dir"] = "/scratch/gpfs/zmd/{}".format(dset_name)
    #    assert os.path.isdir(params["data_dir"]),"nonexistent data directory"
    params["dsets"] = dset_name
    params["input_spec"] = collections.OrderedDict(
        input=(20, 32, 32))  #dp dataset spec
    params["scan_spec"] = collections.OrderedDict(soma=(1, 20, 32, 32))
    params["scan_params"] = dict(stride=(0.1, 0.1, 0.1), blend="bump")

    #Use-specific Module imports
    params["model_class"] = utils.load_source(model_fname).Model

    #"Schema" for turning the parameters above into arguments
    # for the model class
    params["model_args"] = [
        params["in_spec"], params["output_spec"], params["width"]
    ]
    params["model_kwargs"] = {}

    #Modules used for record-keeping
    params["modules_used"] = [__file__, model_fname, "layers.py"]

    return params
示例#7
0
def fill_params(expt_name, chkpt_num, gpus,
                nobn, model_name, tag, jobid):

    params = {}

    #Model params
    params["in_dim"]      = 1
    params["output_spec"] = collections.OrderedDict(soma_label=1)
    params["depth"]       = 4
    params["batch_norm"]  = not(nobn)
    params["activation"]  = F.sigmoid
    params["chkpt_num"]   = chkpt_num

    #GPUS
    params["gpus"] = gpus

    #IO/Record params
    params["expt_name"]   = expt_name
    params["expt_dir"]    = "/tigress/zmd/3dunet_data/experiments/{}".format(expt_name)
    params["model_dir"]   = os.path.join(params["expt_dir"], "models")
    params["log_dir"]     = os.path.join(params["expt_dir"], "logs")
    params["fwd_dir"]     = os.path.join(params["expt_dir"], "forward")
    params["log_tag"]     = "fwd_" + tag if len(tag) > 0 else "fwd"
    params["output_tag"]  = tag

    #Dataset params
    params["data_dir"]    = "/scratch/gpfs/zmd/20180327_jg40_bl6_sim_03"
    assert os.path.isdir(params["data_dir"]),"nonexistent data directory"
    params["jobid"]       = jobid
    params["input_spec"]  = collections.OrderedDict(input=(20,192,192)) #dp dataset spec
    params["scan_spec"]   = collections.OrderedDict(soma_label=(1,20,192,192))
    params["scan_params"] = dict(stride=(0.75,0.75,0.75), blend="bump")

    #Use-specific Module imports
    params["model_class"]  = utils.load_source('models/RSUNet.py').Model

    #"Schema" for turning the parameters above into arguments
    # for the model class
    params["model_args"]   = [params["in_dim"], params["output_spec"],
                             params["depth"] ]
    params["model_kwargs"] = { "bn" : params["batch_norm"] }

    #Modules used for record-keeping
    params["modules_used"] = [__file__, 'models/RSUNet.py', "layers.py"]

    return params
示例#8
0
def fill_params(expt_name, chkpt_num, batch_sz, gpus, sampler_fname,
                model_fname, augmentor_fname, **args):

    params = {}

    #Model params
    params["in_spec"] = dict(input=(1, 20, 192, 192))
    params["output_spec"] = collections.OrderedDict(cleft=(1, 20, 192, 192))
    params["width"] = [32, 40, 80]

    #Training procedure params
    params["max_iter"] = 1000000
    params["lr"] = 0.00001
    params["test_intv"] = 100
    params["test_iter"] = 10
    params["avgs_intv"] = 50
    params["chkpt_intv"] = 1000
    params["warm_up"] = 50
    params["chkpt_num"] = chkpt_num
    params["batch_size"] = batch_sz

    #Sampling params
    params["data_dir"] = "/tigress/zmd/3dunet_data/ctb/training_inputs"
    assert os.path.isdir(params["data_dir"]), "nonexistent data directory"

    params["train_sets"] = [
        "z269stackstart150", "z269stackstart475", "z266stackstart350",
        "z266stackstart250", "z268stackstart300",
        "z265_zpln165-191_x6325_y4458", "z265_zpln315-340_x4785_y3793"
    ]

    params["val_sets"] = ["z269stackstart100"]

    params["patchsz"] = (20, 192, 192)
    params["sampler_spec"] = dict(input=params["patchsz"],
                                  soma_label=params["patchsz"])

    #GPUS
    params["gpus"] = gpus

    #IO/Record params
    params["expt_name"] = expt_name
    params["expt_dir"] = "/tigress/zmd/3dunet_data/ctb/network/{}".format(
        expt_name)

    params["model_dir"] = os.path.join(params["expt_dir"], "models")
    params["log_dir"] = os.path.join(params["expt_dir"], "logs")
    params["fwd_dir"] = os.path.join(params["expt_dir"], "forward")
    params["tb_train"] = os.path.join(params["expt_dir"], "tb/train")
    params["tb_val"] = os.path.join(params["expt_dir"], "tb/val")

    #Use-specific Module imports
    params["model_class"] = utils.load_source(model_fname).Model
    params["sampler_class"] = utils.load_source(sampler_fname).Sampler
    params["augmentor_constr"] = utils.load_source(
        augmentor_fname).get_augmentation

    #"Schema" for turning the parameters above into arguments
    # for the model class
    params["model_args"] = [
        params["in_spec"], params["output_spec"], params["width"]
    ]
    params["model_kwargs"] = {}

    #modules used for record-keeping
    params["modules_used"] = [
        __file__, model_fname, sampler_fname, augmentor_fname, "loss.py"
    ]

    return params
示例#9
0
def fill_params_train(expt_name, batch_sz, gpus, sampler_fname, model_fname,
                      augmentor_fname, **args):

    params = {}

    #Model params
    params["in_spec"] = dict(input=(1, 20, 192, 192))
    params["output_spec"] = collections.OrderedDict(soma=(1, 20, 192, 192))
    params["width"] = [32, 40, 80]

    #Training procedure params
    params["max_iter"] = 51
    params["lr"] = 0.00001
    params["test_intv"] = 25
    params["test_iter"] = 10
    params["avgs_intv"] = 10
    params["chkpt_intv"] = 10
    params["warm_up"] = 5
    params["chkpt_num"] = 0
    params["batch_size"] = batch_sz

    #Sampling params
    print("the working directory is: {}\n".format(os.getcwd()))
    params["data_dir"] = os.path.join(os.path.dirname(os.getcwd()), 'demo')
    assert os.path.isdir(params["data_dir"]), "nonexistent data directory"

    params["train_sets"] = ["train"]

    params["val_sets"] = ["val"]

    params["patchsz"] = (20, 192, 192)
    params["sampler_spec"] = dict(input=params["patchsz"],
                                  soma_label=params["patchsz"])

    #GPUS
    params["gpus"] = gpus

    #IO/Record params
    params["expt_name"] = expt_name
    params["expt_dir"] = os.path.join(params["data_dir"],
                                      "experiments/{}".format(expt_name))

    params["model_dir"] = os.path.join(params["expt_dir"], "models")
    params["log_dir"] = os.path.join(params["expt_dir"], "logs")
    params["fwd_dir"] = os.path.join(params["expt_dir"], "forward")
    params["tb_train"] = os.path.join(params["expt_dir"], "tb/train")
    params["tb_val"] = os.path.join(params["expt_dir"], "tb/val")

    #Use-specific Module imports
    params["model_class"] = utils.load_source(model_fname).Model
    params["sampler_class"] = utils.load_source(sampler_fname).Sampler
    params["augmentor_constr"] = utils.load_source(
        augmentor_fname).get_augmentation

    #"Schema" for turning the parameters above into arguments
    # for the model class
    params["model_args"] = [
        params["in_spec"], params["output_spec"], params["width"]
    ]
    params["model_kwargs"] = {}

    #modules used for record-keeping
    params["modules_used"] = [
        __file__, model_fname, sampler_fname, augmentor_fname, "loss.py"
    ]

    return params
示例#10
0
def fill_params(expt_name, chkpt_num, batch_sz, gpus, sampler_fname,
                model_fname, augmentor_fname, **args):

    params = {}

    #Model params
    params["in_spec"] = dict(input=(1, 20, 192, 192))
    params["output_spec"] = collections.OrderedDict(cleft=(1, 20, 192, 192))
    params["width"] = [32, 40, 80]

    #Training procedure params
    params["max_iter"] = 1000000
    params["lr"] = 0.00001
    params["test_intv"] = 100
    params["test_iter"] = 10
    params["avgs_intv"] = 50
    params["chkpt_intv"] = 10
    params["warm_up"] = 50
    params["chkpt_num"] = chkpt_num
    params["batch_size"] = batch_sz

    #Sampling params
    params["data_dir"] = "/tigress/zmd/3dunet_data/prv/all_inputs/"
    assert os.path.isdir(params["data_dir"]), "nonexistent data directory"

    params["train_sets"] = [
        'zd_ann_prv_jg05_neocortex_z310-449_01',
        'zd_ann_prv_jg24_neocortex_z300-400_01',
        '20180306_jg_bl6f_prv_16_647_010na_7d5um_250msec_10povlp_ch00_C00_Z0650-0700_01',
        '20180306_jg_bl6f_prv_16_647_010na_7d5um_250msec_10povlp_ch00_C00_Z0450-0500_01',
        '20180306_jg_bl6f_prv_16_647_010na_7d5um_250msec_10povlp_ch00_C00_Z0450-0500_00',
        'cj_ann_prv_jg05_neocortex_z250-449_02',
        'zd_ann_prv_jg32_hypothal_z710-810_02',
        'cj_ann_prv_jg05_hypothal_z661-760_02',
        'JGANNOTATION_20180305_jg_bl6f_prv_12_647_010na_7d5um_250msec_10povlp_ch00_C00_400-440_01',
        'cj_ann_prv_jg29_neocortex_z700-800_02',
        'cj_ann_prv_jg24_neocortex_z300-400_01',
        'cj_ann_prv_jg32_neocortex_z650-810_01',
        '20180305_jg_bl6f_prv_11_647_010na_7d5um_250msec_10povlp_ch00_C00_300-345_00',
        'JGANNOTATION_20180306_jg_bl6f_prv_16_647_010na_7d5um_250msec_10povlp_ch00_C00_Z0450-0500_01',
        'cj_ann_prv_jg24_neocortex_z300-400_02',
        'cj_ann_prv_jg24_hypothal_z550-650_01',
        'cj_ann_prv_jg29_hypothal_z580-700_01',
        'zd_ann_prv_jg29_neocortex_z300-500_01',
        '20180305_jg_bl6f_prv_11_647_010na_7d5um_250msec_10povlp_ch00_C00_300-345_01',
        'zd_ann_prv_jg32_neocortex_z650-810_01',
        'zd_ann_prv_jg24_hypothal_z550-650_01',
        '20180215_jg_bl6f_prv_10_647_010na_z7d5um_250msec_10povlap_ch00_z200-400_y4500-4850_x2050-2400',
        '20180306_jg_bl6f_prv_16_647_010na_7d5um_250msec_10povlp_ch00_C00_Z0650-0700_06',
        'cj_ann_prv_jg32_hypothal_z650-810_01',
        '20180305_jg_bl6f_prv_12_647_010na_7d5um_250msec_10povlp_ch00_C00_400-440_01',
        'JGANNOTATION_20180306_jg_bl6f_prv_16_647_010na_7d5um_250msec_10povlp_ch00_C00_Z0450-0500_02',
        '20180305_jg_bl6f_prv_12_647_010na_7d5um_250msec_10povlp_ch00_C00_400-440_03',
        'cj_ann_prv_jg05_neocortex_z310-449_01'
    ]

    params["val_sets"] = [
        'cj_ann_prv_jg29_hypothal_z700-800_02',
        'JGANNOTATION_20180305_jg_bl6f_prv_12_647_010na_7d5um_250msec_10povlp_ch00_C00_400-440_02',
        '20180306_jg_bl6f_prv_16_647_010na_7d5um_250msec_10povlp_ch00_C00_Z0650-0700_00',
        '20180305_jg_bl6f_prv_12_647_010na_7d5um_250msec_10povlp_ch00_C00_400-440_02',
        'JGANNOTATION_20180305_jg_bl6f_prv_12_647_010na_7d5um_250msec_10povlp_ch00_C00_400-440_03',
        '20180306_jg_bl6f_prv_16_647_010na_7d5um_250msec_10povlp_ch00_C00_Z0450-0500_06',
        '20180306_jg_bl6f_prv_16_647_010na_7d5um_250msec_10povlp_ch00_C00_Z0650-0700_05',
        '20180305_jg_bl6f_prv_12_647_010na_7d5um_250msec_10povlp_ch00_C00_400-440_00'
    ]

    params["patchsz"] = (20, 192, 192)
    params["sampler_spec"] = dict(input=params["patchsz"],
                                  soma_label=params["patchsz"])

    #GPUS
    params["gpus"] = gpus

    #IO/Record params
    params["expt_name"] = expt_name
    params["expt_dir"] = "/tigress/zmd/3dunet_data/prv/experiments/{}".format(
        expt_name)

    params["model_dir"] = os.path.join(params["expt_dir"], "models")
    params["log_dir"] = os.path.join(params["expt_dir"], "logs")
    params["fwd_dir"] = os.path.join(params["expt_dir"], "forward")
    params["tb_train"] = os.path.join(params["expt_dir"], "tb/train")
    params["tb_val"] = os.path.join(params["expt_dir"], "tb/val")

    #Use-specific Module imports
    params["model_class"] = utils.load_source(model_fname).Model
    params["sampler_class"] = utils.load_source(sampler_fname).Sampler
    params["augmentor_constr"] = utils.load_source(
        augmentor_fname).get_augmentation

    #"Schema" for turning the parameters above into arguments
    # for the model class
    params["model_args"] = [
        params["in_spec"], params["output_spec"], params["width"]
    ]
    params["model_kwargs"] = {}

    #modules used for record-keeping
    params["modules_used"] = [
        __file__, model_fname, sampler_fname, augmentor_fname, "loss.py"
    ]

    return params
示例#11
0
def fill_params(expt_name, chkpt_num, batch_sz, gpus, sampler_fname,
                model_fname, augmentor_fname, **args):

    params = {}

    #Model params
    params["in_spec"] = dict(input=(1, 20, 32, 32))
    params["output_spec"] = collections.OrderedDict(cleft=(1, 20, 32, 32))
    params["width"] = [32, 40, 80]

    #Training procedure params
    params["max_iter"] = 1000000
    params["lr"] = 0.00001
    params["test_intv"] = 100
    params["test_iter"] = 10
    params["avgs_intv"] = 50
    params["chkpt_intv"] = 1000
    params["warm_up"] = 50
    params["chkpt_num"] = chkpt_num
    params["batch_size"] = batch_sz

    #Sampling params
    params[
        "data_dir"] = "/home/wanglab/Documents/cfos_inputs/otsu_and_guassian_screened"
    assert os.path.isdir(params["data_dir"]), "nonexistent data directory"

    params["train_sets"] = [
        'dp_ann_201812_pcdev_lob6_4_forebrain_cortex_z200-219',
        'tp_ann_201812_pcdev_lob6_9_forebrain_hypothal_z520-539',
        'tp_ann_201812_pcdev_crus1_23_forebrain_cortex_z290-309',
        'jd_ann_201904_an19_ymazefos_020719_thal_z350-369',
        'jd_ann_201904_an21_ymazefos_020719_hypothal_z450-469',
        'dp_ann_201904_an19_ymazefos_020719_pfc_z380-399',
        'dp_ann_201904_an21_ymazefos_020719_hypothal_z450-469',
        'tp_ann_201904_an10_ymzefos_020719_cortex_z280-279',
        'jd_ann_201904_an22_ymazefos_020719_pfc_z150-169',
        'jd_ann_201904_an22_ymazefos_020719_cb_z160-179',
        'dp_ann_201904_an22_ymazefos_020719_cb_z160-179',
        'tp_ann_201904_an19_ymazefos_020719_pfc_z380-399',
        'dp_ann_201904_an12_ymazefos_020719_hypothal_z420-449',
        'tp_ann_201812_pcdev_crus1_23_forebrain_midbrain_z260-279',
        'tp_ann_201904_an4_ymazefos_020119_cortex_z200-219',
        'tp_ann_201904_an4_ymazefos_020119_pfc_z200-219',
        'tp_ann_201812_pcdev_lob6_4_forebrain_cortex_z200-219',
        'dp_ann_201904_an19_ymazefos_020719_cortex_z380-399_02',
        'tp_ann_201904_an22_ymazefos_020719_pfc_z150-169',
        'jd_ann_201904_an30_ymazefos_020719_pfc_z410-429',
        'jd_ann_201904_an10_ymazefos_020719_hypothal_z460-479',
        'jd_ann_201904_an10_ymazefos_020719_pb_z260-279',
        'jd_ann_201904_an30_ymazefos_020719_cortex_z400-419',
        'dp_ann_201904_an19_ymazefos_020719_cortex_z350-369',
        'dp_ann_an16_ymazecfos_z260-299_retrosplenial_cropped'
    ]

    params["val_sets"] = [
        'dp_ann_201904_an12_ymazefos_020719_cortex_z371-390',
        'dp_ann_201904_an19_ymazefos_020719_cb_z380-399',
        'dp_ann_201812_pcdev_lob6_9_forebrain_hypothal_z520-539',
        'jd_ann_201904_an30_ymazefos_020719_striatum_z416-435',
        'tp_ann_201904_an30_ymazefos_020719_striatum_z416-435',
        'dp_ann_an22_ymazecfos_z230-249_sm_cortex_cropped',
        'dp_ann_201904_an19_ymazefos_020719_thal_z350-369'
    ]

    params["patchsz"] = (20, 32, 32)
    params["sampler_spec"] = dict(input=params["patchsz"],
                                  soma_label=params["patchsz"])

    #GPUS
    params["gpus"] = gpus

    #IO/Record params
    params["expt_name"] = expt_name
    params[
        "expt_dir"] = "/home/wanglab/Documents/cfos_net/experiment_dirs/{}".format(
            expt_name)

    params["model_dir"] = os.path.join(params["expt_dir"], "models")
    params["log_dir"] = os.path.join(params["expt_dir"], "logs")
    params["fwd_dir"] = os.path.join(params["expt_dir"], "forward")
    params["tb_train"] = os.path.join(params["expt_dir"], "tb/train")
    params["tb_val"] = os.path.join(params["expt_dir"], "tb/val")

    #Use-specific Module imports
    params["model_class"] = utils.load_source(model_fname).Model
    params["sampler_class"] = utils.load_source(sampler_fname).Sampler
    params["augmentor_constr"] = utils.load_source(
        augmentor_fname).get_augmentation

    #"Schema" for turning the parameters above into arguments
    # for the model class
    params["model_args"] = [
        params["in_spec"], params["output_spec"], params["width"]
    ]
    params["model_kwargs"] = {}

    #modules used for record-keeping
    params["modules_used"] = [
        __file__, model_fname, sampler_fname, augmentor_fname, "loss.py"
    ]

    return params