示例#1
0
        outputs = netG(inputs)
        outputs_cpu = outputs.data.cpu().numpy()

        lossL1 = criterionL1(outputs, targets)
        L1val_accum += lossL1.item()

        if i == 0:
            input_ndarray = inputs_cpu.cpu().numpy()[0]
            v_norm = (np.max(np.abs(input_ndarray[0, :, :]))**2 +
                      np.max(np.abs(input_ndarray[1, :, :]))**2)**0.5

            outputs_denormalized = data.denormalize(outputs_cpu[0], v_norm)
            targets_denormalized = data.denormalize(
                targets_cpu.cpu().numpy()[0], v_norm)
            utils.makeDirs(["results_train"])
            utils.imageOut("results_train/epoch{}_{}".format(epoch, i),
                           outputs_denormalized,
                           targets_denormalized,
                           saveTargets=True)

    # data for graph plotting
    L1_accum /= len(trainLoader)
    L1val_accum /= len(valiLoader)
    if saveL1:
        if epoch == 0:
            utils.resetLog(prefix + "L1.txt")
            utils.resetLog(prefix + "L1val.txt")
        utils.log(prefix + "L1.txt", "{} ".format(L1_accum), False)
        utils.log(prefix + "L1val.txt", "{} ".format(L1val_accum), False)
示例#2
0
    #fileName = dataDir + str(uuid.uuid4()) # randomized name
    fileName = dataDir + "%s_%d_%d" % (basename, int(
        freestreamX * 100), int(freestreamY * 100))
    print("\tsaving in " + fileName + ".npz")
    np.savez_compressed(fileName, a=npOutput)


files = os.listdir(airfoil_database)
files.sort()
if len(files) == 0:
    print("error - no airfoils found in %s" % airfoil_database)
    exit(1)

utils.makeDirs([
    "./data_pictures", "./train", "./OpenFOAM/constant/polyMesh/sets",
    "./OpenFOAM/constant/polyMesh"
])

# main

fout = open('train.txt', 'wt')
for n in range(samples):
    print("Run {}:".format(n))
    print("Run {}:".format(n), file=fout)

    #fileNumber = np.random.randint(0, len(files))
    #basename = os.path.splitext( os.path.basename(files[fileNumber]) )[0]
    #print("\tusing {}".format(files[fileNumber]))
    #print("\tusing {}".format(files[fileNumber]), file=fout)

    basename = 'cylinder.dat'
示例#3
0
targets = Variable(targets)
targets = targets.cuda()
inputs = torch.FloatTensor(1, 3, res, res)
inputs = Variable(inputs)
inputs = inputs.cuda()

targets_dn = torch.FloatTensor(1, 3, res, res)
targets_dn = Variable(targets_dn)
targets_dn = targets_dn.cuda()
outputs_dn = torch.FloatTensor(1, 3, res, res)
outputs_dn = Variable(outputs_dn)
outputs_dn = outputs_dn.cuda()

netG = TurbNetG(channelExponent=expo)
lf = "./" + prefix + "testout{}.txt".format(suffix)
utils.makeDirs(["results_test"])

# loop over different trained models
avgLoss = 0.
losses = []
models = []
loss_p_list = []
loss_v_list = []
accum_list = []

for si in range(25):
    s = chr(96 + si)
    if (si == 0):
        s = ""  # check modelG, and modelG + char
    modelFn = "./" + prefix + "modelG{}{}".format(suffix, s)
    if not os.path.isfile(modelFn):
示例#4
0
def init():
    '''init repository'''
    try:
        utils.makeDirs(getPath())
    except Exception as e:
        raise Exception('could not init repository. reason: {reason}'.format(reason = e.message))