示例#1
0
import numpy as np
import matplotlib.pyplot as plt
from utils import display_image, mean_cov
from attack import PGD_attack_fast

#loading the training dataset
train_cat = np.matrix(np.loadtxt('./dataset/train_cat.txt', delimiter=','))
train_grass = np.matrix(np.loadtxt('./dataset/train_grass.txt', delimiter=','))

#loading the test dataset
Y = plt.imread('./dataset/cat_grass.jpg') / 255
truth = plt.imread('./dataset/truth.png')

#computing the parameters for gaussian classifier (Training)
mean_cat, cov_cat, pi_cat = mean_cov(train_cat, train_grass)
mean_grass, cov_grass, pi_grass = mean_cov(train_grass, train_cat)

#overlapping
stride = 1

#Inference
display_image(img_perturbed=Y,
              mean_cat=mean_cat,
              cov_cat=cov_cat,
              pi_cat=pi_cat,
              mean_grass=mean_grass,
              cov_grass=cov_grass,
              pi_grass=pi_grass,
              original_img=Y,
              truth=truth,
     Adv_training_data = Adv_training_data_CW
elif args.train=='PGD':
    Adv_training_data = Adv_training_data_PGD
else:
    raise ValueError
    
#loading the training dataset
train_cat=np.matrix(np.loadtxt('./dataset/train_cat.txt',delimiter=','))
train_grass=np.matrix(np.loadtxt('./dataset/train_grass.txt',delimiter=','))

#loading the test dataset
Y = plt.imread ('./dataset/cat_grass.jpg')/255
truth = plt.imread ('./dataset/truth.png')

#computing the parameters for gaussian classifier (Training)
mean_cat,cov_cat, pi_cat = mean_cov(train_cat,train_grass)
mean_grass,cov_grass, pi_grass = mean_cov(train_grass,train_cat)

Lamda =  np.linspace (0,5.5,10)
Alpha =  np.linspace (0.00002, 0.0003,10)

augmented_cat =train_cat
augmented_grass = train_grass
#parameters for blackbox attack
mean_cat_defense = mean_cat
cov_cat_defense = cov_cat
pi_cat_defense = pi_cat
mean_grass_defense = mean_grass
cov_grass_defense = cov_grass
pi_grass_defense = pi_grass
示例#3
0
if args.train == 'CW':
    Adv_training_data = Adv_training_data_CW
elif args.train == 'PGD':
    Adv_training_data = Adv_training_data_PGD
else:
    raise ValueError
#loading the training dataset
train_cat = np.matrix(np.loadtxt('./dataset/train_cat.txt', delimiter=','))
train_grass = np.matrix(np.loadtxt('./dataset/train_grass.txt', delimiter=','))

#loading the test dataset
Y = plt.imread('./dataset/cat_grass.jpg') / 255
truth = plt.imread('./dataset/truth.png')

#computing the parameters for gaussian classifier (Training)
mean_cat, cov_cat, pi_cat = mean_cov(train_cat, train_grass)
mean_grass, cov_grass, pi_grass = mean_cov(train_grass, train_cat)

Lamda = np.linspace(0.5, 5.5, 10)
Alpha = np.linspace(0.00002, 0.0003, 10)

augmented_cat = train_cat
augmented_grass = train_grass
#parameters for blackbox attack
mean_cat_defense = mean_cat
cov_cat_defense = cov_cat
pi_cat_defense = pi_cat
mean_grass_defense = mean_grass
cov_grass_defense = cov_grass
pi_grass_defense = pi_grass
示例#4
0
global args
args = parser.parse_args()
print(args)


#loading the training dataset
train_cat=np.matrix(np.loadtxt('./dataset/train_cat.txt',delimiter=','))
train_grass=np.matrix(np.loadtxt('./dataset/train_grass.txt',delimiter=','))

#loading the test dataset
Y = plt.imread ('./dataset/cat_grass.jpg')/255
truth = plt.imread ('./dataset/truth.png')

#computing the parameters for gaussian classifier (Training)
q1 = Quantize(n_bits=args.n_bits, quantize=args.quantize)
mean_cat_defense,cov_cat_defense, pi_cat_defense = mean_cov(q1.forward(train_cat),q1.forward(train_grass))
mean_grass_defense,cov_grass_defense, pi_grass_defense = mean_cov(q1.forward(train_grass),q1.forward(train_cat))

if args.attack_type.lower() == 'whitebox':
    mean_cat_attack = mean_cat_defense
    cov_cat_attack = cov_cat_defense
    pi_cat_attack = pi_cat_defense
    mean_grass_attack = mean_grass_defense
    cov_grass_attack = cov_grass_defense
    pi_grass_attack = pi_grass_defense
elif args.attack_type.lower() == 'blackbox':        
    mean_cat_attack,cov_cat_attack, pi_cat_attack = mean_cov(train_cat,train_grass)
    mean_grass_attack,cov_grass_attack, pi_grass_attack = mean_cov(train_grass,train_cat)
    print("Inference without Quantization")
    #Inference
    display_image(img_perturbed = Y,