示例#1
0
    def fit_evaluate(self, X_train, y_train, X_test, y_test):
        # Do the regression -- change this if it to slow.
        coeffs = fit_pixel(X_train, y_train)
        print(
            'Finished fitting pixel test data in load_transform_fit after {} seconds'
            .format(timer() - self.timer_start))

        y_test_pred = predict_pixel(X_test, coeffs)
        y_train_pred = predict_pixel(X_train, coeffs)

        if self.config['sigmoid']:
            y_test_pred = inverse_sigmoid(y_test_pred)
            y_train_pred = inverse_sigmoid(y_train_pred)

        self.score['mse_test'] = mean_squared_error(y_test, y_test_pred)[0]
        self.score['ase_test'] = accumulated_squared_error(
            y_test, y_test_pred)[0]
        self.score['r2_test'] = r2_score(y_test, y_test_pred)[0]

        self.score['mse_train'] = mean_squared_error(y_train, y_train_pred)[0]
        self.score['ase_train'] = accumulated_squared_error(
            y_train, y_train_pred)[0]
        self.score['r2_train'] = r2_score(y_train, y_train_pred)[0]

        print(
            'Finished computing mse, ase, r2 data in load_transform_fit after {} seconds'
            .format(timer() - self.timer_start))
        return coeffs,
示例#2
0
    def fit(self, X, z, split_size):
        """Searches for the optimal hyperparameter combination."""
        # model and params are now lists --> sende med navn istedenfor.
        # Setup
        self.results = {self.name: []}
        self.train_scores_mse, self.test_scores_mse = [], []
        self.train_scores_r2, self.test_scores_r2 = [], []

        # Splitting our original dataset into test and train.
        X_train, X_test, z_train, z_test = train_test_split(
            X, z, split_size=split_size, random_state=105)

        " Returning these dictionaries to plot mse vs model"
        self.mse_test = []
        self.mse_train = []
        self.r2_test = []
        self.r2_train = []
        self.z_pred = []
        self.coef_ = []
        # For en model tester vi alle parameterne og returnerer denne.
        for param in self.params:
            estimator = self.model(lmd=param)
            # Train a model for this pair of lambda and random state
            estimator.fit(X_train, z_train)
            temp = estimator.predict(X_test)
            temp2 = estimator.predict(X_train)
            self.mse_test.append(mean_squared_error(z_test, temp))
            self.mse_train.append(mean_squared_error(z_train, temp2))
            self.r2_test.append(r2_score(z_test, temp))
            self.r2_train.append(r2_score(z_train, temp2))
            self.z_pred.append(temp)
            self.coef_.append(estimator.coef_)
        return self
示例#3
0
    def fit(self, X_train, y_train, X_test=None, y_test=None):
        """ Learn weights from training data.

        Parameters
        -----------
        X_train : array, shape = [n_samples, n_features]
            Input layer with original features.
        y_train : array, shape = [n_samples]
            Target class labels or data we want to fit.
        X_test : array, shape = [n_samples, n_features]
            Sample features for validation during training.
        y_test : array, shape = [n_samples]
            Sample labels/data for validation during training.

        Returns:
        ----------
        self

        """

        self.initialize_weights_and_bias(X_train)
        #print(self.W_out.shape)

        # for progress formatting
        epoch_strlen = len(str(self.epochs))
        self.eval_ = {'cost': [], 'train_preform': [], 'valid_preform': []}

        # iterate over training epochs
        for epoch in range(self.epochs):

            # Includes forward + backward prop.
            self._minibatch_sgd(X_train, y_train)

            # Evaluation after each epoch during training
            z_h, a_h, z_out, a_out = self._forwardprop(X_train)

            y_train_pred = self.predict(X_train)
            y_test_pred = self.predict(X_test)

            y_test = y_test.reshape((len(y_test), 1))
            y_train = y_train.reshape((len(y_train), 1))

            if (self.tpe == "regression"):
                # Cost without penalty (y-X.dot(self.W_out)).T.dot(y-X.dot(self.W_out))
                train_preform = mean_squared_error(y_train, y_train_pred)
                valid_preform = mean_squared_error(y_test, y_test_pred)
                self.eval_['train_preform'].append(train_preform)
                self.eval_['valid_preform'].append(valid_preform)

            elif (self.tpe == "logistic"):
                #Calculate accuracy
                acc_test = np.sum(y_test == y_test_pred) / len(y_test)
                acc_train = np.sum(y_train == y_train_pred) / len(y_train)
                self.eval_['train_preform'].append(acc_train)
                self.eval_['valid_preform'].append(acc_test)

        return self
示例#4
0
    def fit(self, X, z, split_size):
        """Searches for the optimal hyperparameter combination."""
        # model and params are now lists --> sende med navn istedenfor.
        # Setup
        self.results = {self.name: []}
        self.train_scores_mse, self.test_scores_mse= [], []
        self.train_scores_r2, self.test_scores_r2 = [], []

        # Splitting our original dataset into test and train.
        X_train, X_test, z_train, z_test = train_test_split(X, z, test_size = split_size, feature_scale = self.feature_scale)

        """ Returning these dictionaries to plot (standardized response) mse, r2 vs model"""
        self.mse_test = []
        self.mse_train = []
        self.r2_test = []
        self.r2_train = []
        self.z_pred = []
        self.coef_ = []
        # For en model tester vi alle parameterne og returnerer denne.
        for param in self.params:
            estimator = self.model(lmd=param)
            # Train a model for this pair of lambda and random state
            estimator.fit(X_train, z_train)

            temp = estimator.predict(X_test)
            temp2 = estimator.predict(X_train)
            
            # Tranforming values which left the predictor space back into the predictor space
            # Special case for this cloud cover predictions.             
            temp = transforming_predictorspace(temp)
            temp2 = transforming_predictorspace(temp2)
            
            # Standardizing the response in order to make the performance metrics comparable. 
            temp = standardicing_responce(temp)
            temp2 = standardicing_responce(temp2)
                
            #n,p = np.shape(X_train) Only nessesary for using adjusted r2 score.
            
            z_test = standardicing_responce(z_test)
            z_train = standardicing_responce(z_train)
            
            self.mse_test.append(mean_squared_error(z_test, temp))
            self.mse_train.append(mean_squared_error(z_train, temp2))
            self.r2_test.append(r2_score(z_test, temp))
            self.r2_train.append(r2_score(z_train, temp2))
            
            self.z_pred.append(temp)
            self.coef_.append(estimator.coef_)
        return self
def test_mse():
    from utils import mean_squared_error

    result = []
    x = np.linspace(-1, 1, num=20).reshape(-1, 1)
    y_true = x * x
    y_pred = x * x - 2 * x

    mse = mean_squared_error(y_true.flatten().tolist(),
                             y_pred.flatten().tolist())
    result.append(mse)
    result.append(
        mean_squared_error(
            np.random.normal(size=(10, )).flatten().tolist(),
            np.random.normal(size=(10, )).flatten().tolist()))
    return ['[TEST mean_squared_error],' + weights_to_string(result)]
示例#6
0
def trimmed_model(data_name, label, lower_name, upper_name, model_name):

    lower = np.load(lower_name)
    upper = np.load(upper_name)

    x1, y1 = load_data("data/" + data_name)
    x, y = load_data("data/" + data_name, lower, upper)

    mod = import_module(model_name)
    model = mod.model

    # model
    trained_model = fit_n(5, model, losses.mean_squared_error, x, y)
    ym1 = trained_model.predict(x1)

    trained_model.save(
        "{model}_{data}_{label}_trimmed_{lower}_{upper}.h5".format(
            model=model_name,
            data=data_name,
            label=label,
            lower=lower_name,
            upper=upper_name))
    np.save(
        "{model}_{data}_{label}_y_trimmed_{lower}_{upper}".format(
            model=model_name,
            data=data_name,
            label=label,
            lower=lower_name,
            upper=upper_name), ym1)

    # calculate final loss
    ym1 = ym1.squeeze()
    click.echo("MSE:  {}".format(mean_squared_error(y1, ym1)))
    click.echo("TMSE: {}".format(trimmed_mean_squared_error(y1, ym1)))
示例#7
0
def main():
    X, y = make_regression(n_samples=100, n_features=1, noise=20)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)
    n_samples, n_features = np.shape(X)
    model = LinearRegression(n_iterations=100)
    model.fit(X_train, y_train)

    #training error plot
    n = len(model.training_errors)
    training,=plt.plot(range(n),model.training_errors, label="training error")
    plt.legend(handles=[training])
    plt.title("Error Plot")
    plt.ylabel("Mean Squared Error")
    plt.xlabel("Iterations")
    plt.show()

    y_pred = model.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    print("Mean squared error: %s"%mse)

    y_pred_line = model.predict(X)

    #color map
    cmap = plt.get_cmap("viridis")

    #plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9),s = 10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    plt.plot(366*X, y_pred_line, color="black", linewidth=2, label="Prediction")
    plt.suptitle("Linear Regression")
    plt.title("MSE: %.2f"% mse, fontsize=10)
    plt.xlabel("Day")
    plt.ylabel("Temperature in Celcius")
    plt.legend((m1, m2),("Training data", "Test data"), loc="lower right")
    plt.show()
def main():
    print '-- Grandient Boosting Regression --'
    
    data = pd.read_csv('TempLinkoping2016.txt', sep='\t')
    
    time = np.atleast_2d(data['time'].as_matrix()).T
    temp = np.atleast_2d(data['temp'].as_matrix()).T
    
    X = time.reshape((-1,1))
    X = np.insert(X, 0, values=1, axis=1)
    y = temp[:, 0]
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)
    
    model = GBDTRegressor()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    
    cmap = plt.get_cmap('viridis')
    
    mse = mean_squared_error(y_test, y_pred)
    
    print 'Mean Squared Error:',mse
    
    # Plot the results
    m1 = plt.scatter(366 * X_train[:, 1], y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test[:, 1], y_test, color=cmap(0.5), s=10)
    m3 = plt.scatter(366 * X_test[:, 1], y_pred, color='black', s=10)
    plt.suptitle("Regression Tree")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2, m3), ("Training data", "Test data", "Prediction"), loc='lower right')
    plt.show()
示例#9
0
 def on_train_begin(self, logs=None):
     batch_amount = self.train_generator.get_batch_amount_per_epoch()
     for batch_number in range(batch_amount):
         features, y_true = self.train_generator.__getitem__(batch_number)
         bicubic_loss_batch = mean_squared_error(features, y_true)
         self.bicubic_loss += bicubic_loss_batch / self.train_generator.get_batch_amount_per_epoch(
         )
     print("Bicubic LOSS: {0}".format(self.bicubic_loss))
     print("Bicubic PSNR: {0}".format(psnr_for_loss(self.bicubic_loss)))
 def test_lr_integration_l2(self):
     features, values = generate_data_part_1()
     model = LinearRegressionWithL2Loss(nb_features=1, alpha=0.0)
     model.train(features, values)
     mse = mean_squared_error(values, model.predict(features))
     # self.assertAlmostEqual(0.00175, mse, places=5)
     plt.scatter([x[0] for x in features], values, label='origin');
     plt.plot([x[0] for x in features], model.predict(features), label='predicted');
     plt.legend()
示例#11
0
def main():

    # Load temperature data
    data = pd.read_csv(
        'https://raw.githubusercontent.com/eriklindernoren/ML-From-Scratch/master/mlfromscratch/data/TempLinkoping2016.txt',
        sep="\t")

    time = np.atleast_2d(data["time"].values).T
    temp = data["temp"].values

    X = time  # fraction of the year [0, 1]
    y = temp

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    poly_degree = 13

    model = LassoRegression(degree=15,
                            reg_factor=0.05,
                            learning_rate=0.001,
                            n_iterations=4000)
    model.fit(X_train, y_train)

    # Training error plot
    n = len(model.training_errors)
    training, = plt.plot(range(n),
                         model.training_errors,
                         label="Training Error")
    plt.legend(handles=[training])
    plt.title("Error Plot")
    plt.ylabel('Mean Squared Error')
    plt.xlabel('Iterations')
    plt.show()

    y_pred = model.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    print("Mean squared error: %s (given by reg. factor: %s)" % (mse, 0.05))

    y_pred_line = model.predict(X)

    # Color map
    cmap = plt.get_cmap('viridis')

    # Plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    plt.plot(366 * X,
             y_pred_line,
             color='black',
             linewidth=2,
             label="Prediction")
    plt.suptitle("Lasso Regression")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2), ("Training data", "Test data"), loc='lower right')
    plt.show()
 def test_feature_select(self):
     features, values = generate_data_part_2()
     model = LinearRegression(nb_features=1)
     model.train(features, values)
     mse = mean_squared_error(values, model.predict(features))
     print(f'[part 1.3.1]\tmse: {mse:.5f}')
     plt.scatter([x[0] for x in features], values, label='origin');
     plt.plot([x[0] for x in features], model.predict(features), label='pre dicted');
     plt.legend()
     plt.show()
 def test_data_procession(self):
     features, values = generate_data_part_3()
     train_features, train_values = features[:100], values[:100]
     valid_features, valid_values = features[100:120], values[100:120]
     test_features, test_values = features[120:], values[120:]
     assert len(train_features) == len(train_values) == 100
     assert len(valid_features) == len(valid_values) == 20
     assert len(test_features) == len(test_values) == 30
     best_mse, best_k = 1e10, -1
     for k in [1, 3, 10]:
         train_features_extended = polynomial_features(train_features, k)
         model = LinearRegression(nb_features=k)
         model.train(train_features_extended, train_values)
         train_mse = mean_squared_error(train_values, model.predict(train_features_extended))
         valid_features_extended = polynomial_features(valid_features, k)
         valid_mse = mean_squared_error(valid_values, model.predict(valid_features_extended))
         print(f'[part 1.4.1]\tk: {k:d}\t'
               f'train mse: {train_mse:.5f}\tvalid mse: {valid_mse:.5f}')
         if valid_mse < best_mse:
             best_mse, best_k = valid_mse, k
 def test_lr_integration(self):
     features, values = generate_data_part_1()
     model = LinearRegression(nb_features=1)
     model.train(features, values)
     mse = mean_squared_error(values, model.predict(features))
     self.assertAlmostEqual(0.00175, mse, places=5)
     plt.scatter([x[0] for x in features], values, label='origin');
     plt.plot([x[0] for x in features], model.predict(features), label='predicted');
     plt.title("Holy shit")
     plt.legend()
     plt.show()
示例#15
0
def lambdaError(lam, folds):
    average = 0
    linreg = LeastSquareRegression(lam)
    for i in range(0, 5):
        leave_out_data, training_data = utils.partition_cross_validation_fold(
            folds, i)
        linreg.fit(training_data[0], training_data[1])
        reg_pred = linreg.predict(leave_out_data[0])
        reg_err = utils.mean_squared_error(reg_pred, leave_out_data[1])
        average = average + reg_err
    average = average / 5
    return average
示例#16
0
    def get_mean_squared_error(self, X, y):
        '''
		Gets the mean squared error of the model evaluated on the dataset (X, y).

		- Inputs:
			- X: An ndarray of regressor variable values; i.e., features; i.e., inputs.
			- y: An ndarray of dependent variable values; i.e., targets; i.e., labels, i.e., outputs.

		- Returns:
			- MSE = \frac{1}{m} \sum_i (\mathbf{predictions} - \mathbf{targets})_i^2.
		'''

        return mean_squared_error(np.dot(X, self.get_params()), y)
 def test_add_polynomial_feature(self):
     features, values = generate_data_part_2()
     plt.scatter([x[0] for x in features], values, label='origin');
     for k in [2, 4, 10]:
         # TODO: confirm polynomial feature and k = Xk
         features_extended = polynomial_features(features, k)
         model = LinearRegression(nb_features=k)
         model.train(features_extended, values)
         mse = mean_squared_error(values, model.predict(features_extended))
         print(f'[part 1.3.2]\tk: {k:d}\tmse: {mse:.5f}')
         plt.plot([x[0] for x in features], model.predict(features_extended), label=f'k={k}');
         plt.legend()
         plt.show()
示例#18
0
    def compute_errors(self, model, train_X, train_y, val_X, val_y):
        """ This method computes the training and validation errors for a single model.

        NOTE: For the following:
        - T: Number of training samples.
        - V: Number of validation samples

        Args:
        - model (object (PolynomialRegression)): The model to train and evaluate on.
        - train_X (ndarray (shape: (T, D))): A T-D matrix consisting of T-D dimensional training inputs.
        - train_y (ndarray (shape: (T, 1))): A T-column vector consisting of T scalar training outputs.
        - val_X (ndarray (shape: (V, D))): A V-D matrix consisting of V-D dimensional validation inputs.
        - val_y (ndarray (shape: (V, 1))): A V-column vector consisting of V scalar validation outputs.
        
        Output:
        - training_error (float): The training error of the trained model.
        - validation_error (float): The validation error for the trained model.
        """
        # ====================================================
        # TODO: Implement your solution within the box
        # Compute training and validation errors.

        # assume we are using MSE as our CV error formula (since we have MSE function)

        # train model
        model.fit(train_X, train_y)

        # predict values
        pred_vals_train = model.predict(train_X)
        pred_vals_val = model.predict(val_X)

        # calculate errors
        training_error = mean_squared_error(pred_vals_train, train_y)
        validation_error = mean_squared_error(pred_vals_val, val_y)

        # ====================================================

        return training_error, validation_error
示例#19
0
def main():
    X, y = make_regression(n_samples=100, n_features=1, noise=20)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)
    n_samples, n_features = np.shape(X)

    # 可自行设置模型参数,如正则化,梯度下降轮数学习率等
    model = LinearRegression(n_iterations=3000,
                             regularization=L2Regularization(alpha=0.5))

    model.fit(X_train, y_train)

    # Training error plot 画loss的图
    n = len(model.training_errors)
    training, = plt.plot(range(n),
                         model.training_errors,
                         label="Training Error")
    plt.legend(handles=[training])
    plt.title("Error Plot")
    plt.ylabel('Mean Squared Error')
    plt.xlabel('Iterations')
    plt.show()

    y_pred = model.predict(X_test)
    y_pred = np.reshape(y_pred, y_test.shape)

    mse = mean_squared_error(y_test, y_pred)
    print("Mean squared error: %s" % (mse))

    y_pred_line = model.predict(X)

    # Color map
    cmap = plt.get_cmap('viridis')

    # Plot the results,画拟合情况的图
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    plt.plot(366 * X,
             y_pred_line,
             color='black',
             linewidth=2,
             label="Prediction")
    plt.suptitle("Linear Regression")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2), ("Training data", "Test data"), loc='lower right')
    plt.show()
def main():
    print("-- XGBoost --")

    # 载入气温数据
    data = pd.read_csv('TempLinkoping2016.txt', sep="\t")

    time = np.atleast_2d(data["time"].values).T
    temp = np.atleast_2d(data["temp"].values).T

    X = time.reshape((-1, 1))  # Xi为0-1之间,一年中的比例
    X = np.insert(X, 0, values=1, axis=1)  # 偏置项,当作第一个特征

    # 数据增强,扩充到16倍
    #X = np.vstack((X,X,X,X))
    #X = np.vstack((X,X,X,X))
    #temp = np.vstack((temp,temp+0.01,temp+0.02,temp+0.03))
    #temp = np.vstack((temp,temp+0.1,temp+0.2,temp+0.3))

    y = temp[:, 0]  # Temperature. 减少到一维

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
    #print(y_train)
    model = XGBoost()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    #y_pred_line = model.predict(X) # 使用训练好的模型对原数据进行预测

    mse = mean_squared_error(y_test, y_pred)
    print("Mean Squared Error: {:.2f}".format(mse))

    # Color map
    cmap = plt.get_cmap('viridis')
    # Plot the results
    plt.figure(figsize=(12, 12))
    m1 = plt.scatter(366 * X_train[:, 1], y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test[:, 1], y_test, color=cmap(0.5), s=10)
    m3 = plt.scatter(366 * X_test[:, 1], y_pred, color='black', s=10)
    plt.suptitle("XGBoost Regression Tree", fontsize=28)
    plt.title("MSE: {:.2f}".format(mse), fontsize=20)
    plt.xlabel('Day', fontsize=18)
    plt.ylabel('Temperature in Celcius', fontsize=16)
    plt.tick_params(labelsize=15)  # 刻度字体大小
    plt.legend((m1, m2, m3), ("Training data", "Test data", "Prediction"),
               loc='lower right',
               fontsize=15)
    plt.show()
示例#21
0
def main():
    print("-- XGBoost --")

    # Load temperature data
    data = pd.read_csv('temperature.txt', sep="\t")

    time = np.atleast_2d(data["time"].values).T  # shape=(366,1)  numpy.ndarray
    temp = np.atleast_2d(data["temp"].values).T

    X = time.reshape((-1, 1))  # Time. Fraction of the year [0, 1]
    X = np.insert(X, 0, values=1, axis=1)  # Insert bias term
    # print(type(X), X.shape, X)
    y = temp[:, 0]  # Temperature. Reduce to one-dim

    print('=' * 100)
    print(type(y), y.shape, y)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.5,
                                                        shuffle=True)
    # print(y_train)
    model = XGBoost()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    # print(y_test[0:5])
    # Color map
    cmap = plt.get_cmap('viridis')

    mse = mean_squared_error(y_test, y_pred)

    print("Mean Squared Error:", mse)

    # Plot the results
    m1 = plt.scatter(366 * X_train[:, 1], y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test[:, 1], y_test, color=cmap(0.5), s=10)
    m3 = plt.scatter(366 * X_test[:, 1], y_pred, color='black', s=10)
    plt.suptitle("Regression Tree")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2, m3), ("Training data", "Test data", "Prediction"),
               loc='lower right')
    plt.show()
def main():
    # Load temperature data
    data = pd.read_csv('./TempLinkoping2016.txt', sep="\t")

    #[[0.00273224] [0.00546448] [0.00819672]......]
    time = np.atleast_2d(data["time"].values).T
    #[[  0.1] [ -4.5] [ -6.3]...]
    temp = np.atleast_2d(data["temp"].values).T

    #X:[[-1.72732488], [-1.71786008],....[-1.72732488]]
    X = standardize(time)  # Time. Fraction of the year [0, 1]  标准化
    #[[  0.1] [ -4.5] [ -6.3]...]---------->[0.1,-4.5,-6.3........]
    y = temp[:, 0]  # Temperature. Reduce to one-dim

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.2,
                                                        shuffle=True)

    model = RegressionTree()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    model.print_tree(indent=' ')
    # Color map
    cmap = plt.get_cmap('viridis')

    mse = mean_squared_error(y_test, y_pred)
    print("Mean Squared Error:", mse)

    # Plot the results
    # Plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    m3 = plt.scatter(366 * X_test, y_pred, color='black', s=10)
    plt.suptitle("Regression Tree")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2, m3), ("Training data", "Test data", "Prediction"),
               loc='lower right')
    plt.show()
示例#23
0
def test_regression(model):

    Regression = models[model]

    print ("-- Regression Tree --")

    # Load temperature data
    data = pd.read_csv('data/TempLinkoping2016.txt', sep="\t")

    time = np.atleast_2d(data["time"].values).T
    temp = np.atleast_2d(data["temp"].values).T

    X = standardize(time)        # Time. Fraction of the year [0, 1]
    y = temp[:, 0]  # Temperature. Reduce to one-dim
    print (X.shape, y.shape)

    X_train, y_train, X_test, y_test = split_train_test(X, y)

    model = Regression()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    y_pred_line = model.predict(X)

    # Color map
    cmap = plt.get_cmap('viridis')

    mse = mean_squared_error(y_test, y_pred)

    print ("Mean Squared Error:", mse)

    # Plot the results
    # Plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    m3 = plt.scatter(366 * X_test, y_pred, color='black', s=10)
    plt.suptitle("Regression Tree")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2, m3), ("Training data", "Test data", "Prediction"), loc='lower right')
    plt.show()
示例#24
0
def simple_model(label, data_name, model_name):

    x, y = load_data("data/" + data_name)

    mod = import_module(model_name)
    model = mod.model

    # model
    trained_model = fit_n(5, model, losses.mean_squared_error, x, y)
    ym1 = trained_model.predict(x)

    trained_model.save("{model}_{data}_{label}_plain.h5".format(
        model=model_name, data=data_name, label=label))
    np.save(
        "{model}_{data}_{label}_y_plain".format(model=model_name,
                                                data=data_name,
                                                label=label), ym1)

    # calculate final loss
    ym1 = ym1.squeeze()
    print("MSE:  ", mean_squared_error(y, ym1))
    print("TMSE: ", trimmed_mean_squared_error(y, ym1))
def main():
    print("-- Gradient Boosting Regression --")

    # Load temperature data
    data = pd.read_csv('../TempLinkoping2016.txt', sep="\t")

    time = np.atleast_2d(data["time"].values).T
    temp = np.atleast_2d(data["temp"].values).T

    X = time.reshape((-1, 1))  # Time. Fraction of the year [0, 1]
    X = np.insert(X, 0, values=1, axis=1)  # Insert bias term
    y = temp[:, 0]  # Temperature. Reduce to one-dim

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

    model = GBDTRegressor()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    y_pred_line = model.predict(X)

    # Color map
    cmap = plt.get_cmap('viridis')

    mse = mean_squared_error(y_test, y_pred)

    print("Mean Squared Error:", mse)

    # Plot the results
    m1 = plt.scatter(366 * X_train[:, 1], y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test[:, 1], y_test, color=cmap(0.5), s=10)
    m3 = plt.scatter(366 * X_test[:, 1], y_pred, color='black', s=10)
    plt.suptitle("Regression Tree")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2, m3), ("Training data", "Test data", "Prediction"),
               loc='lower right')
    plt.show()
def main():

    print ("-- Regression Tree --")

    # Load temperature data
    data = pd.read_csv('../TempLinkoping2016.txt', sep="\t")

    time = np.atleast_2d(data["time"].as_matrix()).T
    temp = np.atleast_2d(data["temp"].as_matrix()).T

    X = standardize(time)        # Time. Fraction of the year [0, 1]
    y = temp[:, 0]  # Temperature. Reduce to one-dim

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

    model = RegressionTree()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)

    y_pred_line = model.predict(X)

    # Color map
    cmap = plt.get_cmap('viridis')

    mse = mean_squared_error(y_test, y_pred)

    print ("Mean Squared Error:", mse)

    # Plot the results
    # Plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    m3 = plt.scatter(366 * X_test, y_pred, color='black', s=10)
    plt.suptitle("Regression Tree")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2, m3), ("Training data", "Test data", "Prediction"), loc='lower right')
    plt.show()
示例#27
0
文件: main.py 项目: r2ufuk/easy21
def sarsa_driver(player_constructor, num_episodes, lambdas, true_q, plot_root):
    if isinstance(num_episodes, list):
        checkpoints = num_episodes
        num_episodes = num_episodes[-1]
    else:
        checkpoints = [
            int(10**(i + 3))
            for i in range(int(math.log10(num_episodes / 1e3)) + 1)
        ]

    lambda_errors = np.empty((len(checkpoints), 0)).tolist()

    learning_curves = []

    for lambada in tqdm(lambdas):
        player = player_constructor(Table, lambada)

        episode_errors = []

        for i_episode in range(num_episodes):
            player()
            episode_errors.append(mean_squared_error(true_q, player.get_q()))

            episode_num = i_episode + 1
            if episode_num in checkpoints:
                lambda_errors[checkpoints.index(episode_num)].append(
                    np.mean(episode_errors))

        if lambada in (0, 1):
            learning_curves.append(episode_errors)

    os.makedirs(plot_root, exist_ok=True)

    path = os.path.join(plot_root, f"learning_curves.png")
    plot_error_by_episode(learning_curves, path=path)

    path = os.path.join(plot_root, f"mse.png")
    plot_error_by_lambda(lambda_errors, lambdas, checkpoints, path=path)
    def __init__(self, num_pads, num_frogs, num_iterations, wpath):
        self.pads_dict = self.initialize_pads_dict(num_pads, num_frogs)
        self.transition_matrix = self.initialize_transition_matrix(num_pads)
        self.write_path = wpath

        self.print_initial_stage(
            num_frogs,
            wpath)  # Print initial stage of frogs/lilypads, pre-jumpsn
        # makes wpath folder if not existing. deletes latex_tables.txt if existing
        utils.clean_dir(
            wpath
        )  # since we append to the bottom of the file instead of overwriting

        net_flow = []
        mse = []
        current_distribution = self.get_pads_distribution_dict(self.pads_dict)
        for i in range(num_iterations):
            print('After {} jumps:'.format(i + 1))
            prev_distribution = current_distribution
            self.increment_time()
            current_distribution = self.get_pads_distribution_dict(
                self.pads_dict)
            net_flow.append(
                self.get_net_flow(current_distribution, prev_distribution, i,
                                  num_pads, num_frogs))
            mse.append(
                utils.mean_squared_error(current_distribution,
                                         prev_distribution, num_pads,
                                         num_frogs))
            utils.pretty_print_dict(current_distribution)
            utils.save_histogram_image(current_distribution, i + 1, num_frogs,
                                       wpath)
            utils.save_distribution_table(current_distribution, i + 1,
                                          num_frogs, wpath, i + 1)
            print('\n')

        e_vals = sorted(utils.get_evals(self.transition_matrix), reverse=True)
        utils.print_and_write_results(net_flow, mse, e_vals, wpath)
示例#29
0
def show_errors( time, Y_true, Y_predict, with_graphs=False ):

    mae  = utils.mean_absolute_error(            Y_true, Y_predict )
    mape = utils.mean_absolute_percentage_error( Y_true, Y_predict, epsilon=1.0 )
    mse  = utils.mean_squared_error(             Y_true, Y_predict )

    print( 'MSE   %f ' % mse.mean() )
    print( 'MAE   %f ' % mae.mean() )
    print( 'MAPE  %7.3f%% ' % mape.mean() )

    if with_graphs:
        pyplot.plot( time, Y_predict[:,0], color='blue',  lw=7, alpha=0.2 )
        pyplot.plot( time, Y_predict[:,1], color='green', lw=7, alpha=0.2 )
        pyplot.plot( time, Y_predict[:,2], color='red',   lw=7, alpha=0.2 )
        pyplot.plot( time, Y_true[:,0], color='blue',  lw=2 )
        pyplot.plot( time, Y_true[:,1], color='green', lw=2 )
        pyplot.plot( time, Y_true[:,2], color='red',   lw=2 )
        pyplot.grid()
        pyplot.show()

        pyplot.plot( time, mape, color='red',   lw=1 )
        pyplot.grid()
        pyplot.show()
示例#30
0
def LearnModelFromDataUsingSGD(data, mfmodel, parameters, extra_data_set=None):
    print("Training model using SGD")

    try:
        os.remove("output/SGD_train_error.txt")
        os.remove("output/SGD_test_error.txt")
    except OSError:
        pass

    for step in range(parameters.steps):

        predicted = mfmodel.calc_matrix()
        print("Step: %s, error: %f" %
              (step, mean_squared_error(mfmodel, predicted, data)))

        write_error_to_file(mfmodel, predicted, data, "SGD_train_error.txt")
        if extra_data_set is not None:
            write_error_to_file(mfmodel, predicted, extra_data_set,
                                "SGD_test_error.txt")

        xs, ys = data.nonzero()
        for x, y in zip(xs, ys):
            sample = (x, y, data[x, y])
            gradient_decent_update(sample, mfmodel, parameters)
示例#31
0
def generate_plot_from_csv(name,
                           dataset,
                           ds_type,
                           cropsize=224,
                           dirname="predictions/debug-448/"):
    """ Generate plots from CSV

    Parameters
    ---------
    name: Model name (vgg16baseline or vgg16decoder)
    dataset: Dataset name (SHHA or SHHB)
    ds_type: Set type (train or test)
    cropsize: Input image crop size
    """
    fname = f"{dirname}/{name}_{dataset}_{ds_type}_predictions_{cropsize}.csv"
    df = pd.read_csv(fname)
    df['diff'] = df.true_labels - df.predicted_labels

    scatter = alt.Chart(df).mark_circle().encode(
        alt.X("true_labels"), alt.Y("predicted_labels"),
        alt.Tooltip(["true_labels", "predicted_labels"]))
    line = alt.Chart(df).mark_line().encode(alt.X('true_labels', title="True"),
                                            alt.Y('true_labels',
                                                  title="Predicted"),
                                            color=alt.value('rgb(0,0,0)'))

    mse = mean_squared_error(df.true_labels.values, df.predicted_labels.values)

    mae = mean_absolute_error(df.true_labels.values,
                              df.predicted_labels.values)

    chart = (scatter + line).properties(
        title=
        f"INPUT {cropsize}, {dataset}:{ds_type.upper()}, MSE: {mse} | MAE: {mae}"
    )
    return chart
示例#32
0
    def converged_gradient(self, num_iter, X, V, W, iter_check=50000, threshold=0.005,
                           gradient_v=None, gradient_w=None, error=True, gradient_check=False,
                           epsilon=10.**-5, x_j=None, y_j=None):
        training_error = None
        training_loss = None

        if num_iter > 1000000:
            return (True, training_error, training_loss)
        # There are two ways to determine if the gradient has converged.
        # (1) Use the training error (error=True)
        # (2) Use the magnitude of the gradient (error=False)
        # In both cases, training_error and training_loss are attached to the response
        # for the purposes of plotting.
        if error:
            if num_iter % iter_check != 0:
                return (False, training_error, training_loss)
            else:
                if gradient_check:
                    # Randomly check five weights.
                    for _ in range(5):
                        # import pdb; pdb.set_trace()
                        random_wi = np.random.randint(W.shape[0])
                        random_wj = np.random.randint(W.shape[1])
                        random_vi = np.random.randint(V.shape[0])
                        random_vj = np.random.randint(V.shape[1])

                        W_plus_epsilon = W.copy()
                        W_plus_epsilon[random_wi][random_wj] = W_plus_epsilon[random_wi][random_wj] + epsilon
                        Z_W_plus = self.perform_forward_pass(x_j, V, W_plus_epsilon)[1]

                        W_minus_epsilon = W.copy()
                        W_minus_epsilon[random_wi][random_wj] = W_minus_epsilon[random_wi][random_wj] - epsilon
                        Z_W_minus = self.perform_forward_pass(x_j, V, W_minus_epsilon)[1]

                        V_plus_epsilon = V.copy()
                        V_plus_epsilon[random_vi][random_vj] = V_plus_epsilon[random_vi][random_vj] + epsilon
                        Z_V_plus = self.perform_forward_pass(x_j, V_plus_epsilon, W)[1]

                        V_minus_epsilon = V.copy()
                        V_minus_epsilon[random_vi][random_vj] = V_minus_epsilon[random_vi][random_vj] - epsilon
                        Z_V_minus = self.perform_forward_pass(x_j, V_minus_epsilon, W)[1]

                        y = np.zeros(10)
                        y[y_j] = 1

                        if self.loss_function == "mean-squared-error":
                            W_plus_cost = mean_squared_error(Z_W_plus, y)
                            W_minus_cost = mean_squared_error(Z_W_minus, y)
                            V_plus_cost = mean_squared_error(Z_V_plus, y)
                            V_minus_cost = mean_squared_error(Z_V_minus, y)
                        else:
                            W_plus_cost = cross_entropy_loss(Z_W_plus.T, y)
                            W_minus_cost = cross_entropy_loss(Z_W_minus.T, y)
                            V_plus_cost = cross_entropy_loss(Z_V_plus.T, y)
                            V_minus_cost = cross_entropy_loss(Z_V_minus.T, y)

                        gradient_approx_wij = (W_plus_cost - W_minus_cost) / (2. * epsilon)
                        gradient_approx_vij = (V_plus_cost - V_minus_cost) / (2. * epsilon)

                        if gradient_approx_wij > gradient_w[random_wi][random_wj] + threshold or \
                           gradient_approx_wij < gradient_w[random_wi][random_wj] - threshold or \
                           gradient_approx_vij > gradient_v[random_vi][random_vj] + threshold or \
                           gradient_approx_vij < gradient_v[random_vi][random_vj] - threshold:
                            raise AssertionError("The gradient was incorrectly computed.")

                classifications_training, training_Z = self.predict(X, V, W, return_Z=True)
                training_error, training_indices_error = benchmark(classifications_training, self.labels)

                if self.validation_data is not None and self.validation_labels is not None:
                    classifications_validation = self.predict(self.validation_data, V, W)
                    validation_error, validation_indices_error = benchmark(classifications_validation, self.validation_labels)

                if self.loss_function == "mean-squared-error":
                    training_loss = mean_squared_error(training_Z.T, self.Y)
                else:
                    training_loss = cross_entropy_loss(training_Z.T, self.Y)

                print("Completed %d iterations.\nThe training error is %.2f.\n The training loss is %.2f."
                      % (num_iter, training_error, training_loss))

                if self.validation_data is not None and self.validation_labels is not None:
                    print("The error on the validation set is %.2f." % validation_error)

                if training_error < threshold:
                    return (True, training_error, training_loss)

                return (False, training_error, training_loss)
        else:
            if num_iter % iter_check == 0:
                classifications_training, training_Z = self.predict(X, V, W, return_Z=True)
                training_error, indices_error = benchmark(classifications_training, self.labels)

                if self.validation_data is not None and self.validation_labels is not None:
                    classifications_validation = self.predict(self.validation_data, V, W)
                    validation_error, validation_indices_error = benchmark(classifications_validation, self.validation_labels)

                if self.loss_function == "mean-squared-error":
                    training_loss = mean_squared_error(training_Z.T, self.Y)
                else:
                    training_loss = cross_entropy_loss(training_Z.T, self.Y)

                print("Completed %d iterations. The training error is %.2f. Training loss is %.2f" % (num_iter, training_error))

                if self.validation_data is not None and self.validation_labels is not None:
                    print("The error on the validation set is %.2f." % validation_error)

            if np.linalg.norm(gradient_v) < threshold and np.linalg.norm(gradient_w) < threshold:
                return (True, training_error, training_loss)
            else:
                return (False, training_error, training_loss)
示例#33
0
文件: dcign.py 项目: policecar/dann
def evaluate_dcign(learning_rate=0.1, weight_decay=4e-06,
                   batch_size=50, n_epochs=5,
                   dataset='../data/minecraft-2d.pkl'):
    """Runs and evaluates the deep convolutional inverse graphics network.

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic gradient)

    :type weight_decay: float
    :param weight_decay: weight decay used (factor for the stochastic gradient)

    :type batch_size: int
    :param batch_size: batch size used (factor for the stochastic gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing
    """

    # Declare custom variables, hyperparameters, etc.
    rng = numpy.random.RandomState(23455)  # a random seed for replicability
    train_percentage = 0.7  # percentage of data to use for training

    # Custom variables
    n_filters = [96, 64, 32, 34, 66, 98]  # number of filters per conv /deconv layer
    # filter_size = [5, 5, 5, 6, 7, 6, 7]  # size of filter in conv /deconv layer
    filter_size = [(5, 5), (5, 5), (5, 5), (7, 7), (6, 6), (7, 7)]
    # The same pooling and unpooling size of (2, 2) is used across the network
    pool_size = [(2, 2)]
    # Note: in case of color images, use tripe tuples for filter and pooling sizes

    n_latent_vars = 23 # 3

    # Dimensionality of the input data; since it's one long vector per image
    # and the number of channels unknown, this has to be specified
    n_channels = 1
    n_rows = 128
    n_cols = 128

    # Load pickled data, shuffle and reshape them, split them into training,
    # validation and test data sets
    data = numpy.load(dataset).astype(numpy.float64)  # convert ints to floats, too

    # Ensure that all batches are of the same size by throwing away out-of-batch samples
    num_batches = data.shape[0] // batch_size  # integer division
    remainder = data.shape[0] % batch_size     # get the remainder
    last_idx = num_batches * batch_size
    data = data[:last_idx]                     # throw away out-of-batch samples

    print("data shape: {0}".format(data.shape))

    # Generate a data index and shuffle it; later use shuffled index to
    # determine which samples go in which data set
    data_index = numpy.arange(data.shape[0])
    numpy.random.shuffle(data_index)

    ######################
    #    PREPROCESSING   #
    ######################
    # Normalize data to [0,1]
    data /= 255  # use 255 rather than data.max() because we know we're dealing w/ color values
    # Scale the data in accordance with the activation function(s) used
    # cf. https://cs231n.github.io/neural-networks-2/#datapre
    # Here: tanh which has a range of [-1; +1]
    data -= data.mean()  # subtract the mean

    print("min: {0:.3f}, max: {1:.3f}".format(data.min(), data.max()))

    # Split data into train, validation and test sets
    split_idx = int(numpy.floor(train_percentage * num_batches)) * batch_size
    train_set = data[data_index[:split_idx]]
    valid_set = data[data_index[split_idx:split_idx + 4 * batch_size]]
    test_set  = data[data_index[split_idx + 4 * batch_size:]]

    # Compute the number of minibatches for training, validation and testing
    n_train_batches = int(numpy.ceil(train_set.shape[0] / batch_size))
    n_valid_batches = int(numpy.ceil(valid_set.shape[0] / batch_size))
    n_test_batches  = int(numpy.ceil(test_set.shape[0]  / batch_size))

    # Create shared theano variables for the training sets
    t_train_set = theano.shared(value=train_set.astype(T.config.floatX), name="t_train_set", borrow=True)
    t_valid_set = theano.shared(value=valid_set.astype(T.config.floatX), name="t_valid_set", borrow=True)
    t_test_set = theano.shared(value=test_set.astype(T.config.floatX), name="t_test_set", borrow=True)

    # Allocate symbolic variables for input x, prediction y, and batch index
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')    # the data as rasterized images
    y = T.ivector('y')   # the labels presented as 1D vector of [int] labels

    ######################
    # BUILDING THE MODEL #
    ######################
    print('... building the model ...')

    # CONSTRUCT CONVOLUTION + POOLING LAYERS
    # Reshape matrix, which is a 2D tensor, to a 4D tensor; cf. ConvPoolLayer()'s requirements
    conv_input = x.reshape((batch_size, n_channels, n_rows, n_cols))
    print("({0}, {1})".format(n_rows, n_cols))

    # Filtering reduces the image size to n_rows - filter_size + 1;
    # pooling reduces it further by division by pool_size
    convlayer1 = ConvPoolLayer(
        rng,
        input=conv_input,
        image_shape=(batch_size, n_channels, n_rows, n_cols),
        filter_shape=(n_filters[0], n_channels, filter_size[0][0], filter_size[0][1]),
        poolsize=pool_size[0]
    )

    # Compute the new image size
    n_im_rows = int(numpy.ceil((n_rows - filter_size[0][0] + 1) / pool_size[0][0]))
    n_im_cols = int(numpy.ceil((n_cols - filter_size[0][1] + 1) / pool_size[0][1]))
    print("({0}, {1})".format(n_im_rows, n_im_cols))

    convlayer2 = ConvPoolLayer(
        rng,
        input=convlayer1.output,
        image_shape=(batch_size, n_filters[0], n_im_rows, n_im_cols),
        filter_shape=(n_filters[1], n_filters[0], filter_size[1][0], filter_size[1][1]),
        poolsize=pool_size[0]
    )

    n_im_rows = int(numpy.ceil((n_im_rows - filter_size[1][0] + 1) / pool_size[0][0]))
    n_im_cols = int(numpy.ceil((n_im_cols - filter_size[1][1] + 1) / pool_size[0][1]))
    print("({0}, {1})".format(n_im_rows, n_im_cols))

    convlayer3 = ConvPoolLayer(
        rng,
        input=convlayer2.output,
        image_shape=(batch_size, n_filters[1], n_im_rows, n_im_cols),
        filter_shape=(n_filters[2], n_filters[1], filter_size[2][0], filter_size[2][1]),
        poolsize=pool_size[0]
    )

    n_im_rows = int(numpy.ceil((n_im_rows - filter_size[2][0] + 1) / pool_size[0][0]))
    n_im_cols = int(numpy.ceil((n_im_cols - filter_size[2][1] + 1) / pool_size[0][1]))
    print("({0}, {1})".format(n_im_rows, n_im_cols))

    # CONSTRUCT FULLY-CONNECTED HIDDEN LAYERS
    # HiddenLayer operates on 2D matrices of shape (batch_size, num_pixels);
    # therefore reshape the output of the convolutional layers accordingly
    hidden_input = convlayer3.output.flatten(2)

    hiddenlayer1 = HiddenLayer(
        rng,
        input=hidden_input,
        n_in=n_filters[2] * n_im_rows * n_im_cols,
        n_out=n_latent_vars,
        activation=T.tanh
    )

    n_im_chans = 1
    n_im_rows = 21
    n_im_cols = 21

    hiddenlayer2 = HiddenLayer(
        rng,
        input=hiddenlayer1.output,
        n_in=n_latent_vars,
        # n_out=n_filters[2] * n_im_rows * n_im_cols,
        n_out = n_im_chans * n_im_rows * n_im_cols,
        activation=T.tanh
    )

    # TODO: Imo tied weights would make a lot of sense here; implement them.

    # CONSTRUCT DECONVOLUTION + UNPOOLING LAYERS
    # deconv_input = hiddenlayer2.output.reshape((batch_size, n_filters[2], n_im_rows, n_im_cols))
    deconv_input = hiddenlayer2.output.reshape((batch_size, n_im_chans, n_im_rows, n_im_cols))

    # Note: here input and image shape differ in that image_shape has the shape of the
    # unpooled input, ie. input.shape[3] * pool_size[x][0] and input.shape[4] * pool_size[x][1]
    deconvlayer1 = DeconvUnpoolLayer(
        rng,
        input=deconv_input,
        # filter_shape=(n_filters[2], n_filters[3], filter_size[3][0], filter_size[3][1]),
        # image_shape=(batch_size, n_filters[3], n_im_rows * pool_size[0][0], n_im_cols * pool_size[0][1]),
        filter_shape=(n_filters[3], n_filters[3], filter_size[3][0], filter_size[3][1]),  # (34, 1, 7, 7)
        image_shape=(batch_size, n_im_chans, n_im_rows * pool_size[0][0], n_im_cols * pool_size[0][1]),  # (50, 1, 26, 26)
        unpoolsize=pool_size[0]
    )
    # W = (32, 1, 7, 7)

    # Calculate the new image shape
    n_im_rows = int(numpy.ceil(n_im_rows * pool_size[0][0] - filter_size[3][0] + 1))
    n_im_cols = int(numpy.ceil(n_im_cols * pool_size[0][1] - filter_size[3][1] + 1))
    print("({0}, {1})".format(n_im_rows, n_im_cols))

    deconvlayer2 = DeconvUnpoolLayer(
        rng,
        input=deconvlayer1.output,
        # filter_shape=(n_filters[4], n_im_chans, filter_size[4][0], filter_size[4][1]),
        filter_shape=(n_filters[4], n_filters[4], filter_size[4][0], filter_size[4][1]),
        # image_shape=(batch_size, n_im_chans, n_im_rows * pool_size[0][0], n_im_cols * pool_size[0][1]),
        image_shape=(batch_size, n_filters[3], n_im_rows * pool_size[0][0], n_im_cols * pool_size[0][1]),
        unpoolsize=pool_size[0]
    )
    # W = (64, 1, 6, 6)

    n_im_rows = int(numpy.ceil(n_im_rows * pool_size[0][0] - filter_size[4][0] + 1))
    n_im_cols = int(numpy.ceil(n_im_cols * pool_size[0][1] - filter_size[4][1] + 1))
    print("({0}, {1})".format(n_im_rows, n_im_cols))

    deconvlayer3 = DeconvUnpoolLayer(
        rng,
        input=deconvlayer2.output,
        # filter_shape=(n_filters[5], n_im_chans, filter_size[5][0], filter_size[5][1]),
        filter_shape=(n_filters[5], n_filters[5], filter_size[5][0], filter_size[5][1]),
        # image_shape=(batch_size, n_im_chans, n_im_rows * pool_size[0][0], n_im_cols * pool_size[0][1]),
        image_shape=(batch_size, n_filters[4], n_im_rows * pool_size[0][0], n_im_cols * pool_size[0][1]),
        unpoolsize=pool_size[0]
    )
    # W = (96, 1, 7, 7)

    n_im_rows = int(numpy.ceil(n_im_rows * pool_size[0][0] - filter_size[5][0] + 1))
    n_im_cols = int(numpy.ceil(n_im_cols * pool_size[0][1] - filter_size[5][1] + 1))
    print("({0}, {1})".format(n_im_rows, n_im_cols))

    # Define the objective function aka cost function to minimize
    y_pred = deconvlayer3.output.flatten(2)

    reconstruction_error = mean_squared_error(x, y_pred)
    weights = [
        deconvlayer3.W, deconvlayer2.W, deconvlayer1.W,
        hiddenlayer2.W, hiddenlayer1.W,
        convlayer3.W, convlayer2.W, convlayer1.W
    ]

    # regularizer = weight_decay * sum((W**2).sum() for W in weights)
    regularizer = 0.005 * sum((W**2).sum() for W in weights)
    cost = reconstruction_error + regularizer

    # Create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        errors(y_pred, x),
        givens = {x: t_test_set[index * batch_size: (index + 1) * batch_size]}
    )

    validate_model = theano.function(
        [index],
        errors(y_pred, x),
        givens = {x: t_valid_set[index * batch_size: (index + 1) * batch_size]}
    )

    # Create a list of all model parameters to be fit by gradient descent
    params = deconvlayer3.params + deconvlayer2.params + deconvlayer1.params \
             + hiddenlayer2.params + hiddenlayer1.params \
             + convlayer3.params + convlayer2.params + convlayer1.params

    # Create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # Train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i], grads[i]) pairs.
    updates = [
        (param_i, param_i - learning_rate * grad_i)
        for param_i, grad_i in zip(params, grads)
    ]

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens = {x: t_train_set[index * batch_size: (index + 1) * batch_size]}
    )

    ###############
    # TRAIN MODEL #
    ###############
    print('... training ...')
    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
                           # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = time.clock()

    epoch = 0
    done_looping = False

    # TODO: use fuel specific tools for iterating
    # for epoch in train_stream.iterate_epochs():
    #     for batch in epoch:
    #         pass

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in range(n_train_batches):

            iter = (epoch - 1) * n_train_batches + minibatch_index

            if iter % 100 == 0:
                print('training @ iter = ', iter)
            cost_ij = train_model(minibatch_index)

            if (iter + 1) % validation_frequency == 0:

                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i
                                     in range(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)
                print(('epoch %i, minibatch %i/%i, validation error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_validation_loss * 100.)))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    # improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                       improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [
                        test_model(i)
                        for i in range(n_test_batches)
                    ]
                    test_score = numpy.mean(test_losses)
                    print((('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.)))

            if patience <= iter:
                done_looping = True
                break

    end_time = time.clock()
    print('Optimization complete.')
    print(('Best validation score of %f %% obtained at iteration %i, '
          'with test performance %f %%' %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.)))
    print(('The code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.)), file=sys.stderr)
示例#34
0
    def __construct_graph(self):
        # Parameter for the first LSTM and find one root
        root_w = tf.get_variable("root_w", [self.hidden_dim,
                                 self.output_dim])
        root_b = tf.get_variable("root_b", [self.output_dim])
        # Parameter for the second LSTM that factorize
        fact_w = tf.get_variable("fact_w", [self.hidden_dim,
                                 self.output_dim])
        fact_b = tf.get_variable("fact_b", [self.output_dim])

        for l in self.seq_lens:
            Print("Creating RNN model for sequence length %d" % l)
            if l > self.seq_lens[0]:
                tf.get_variable_scope().reuse_variables()

            lstm = rnn_cell.BasicLSTMCell(self.hidden_dim)
            cell = rnn_cell.MultiRNNCell([lstm] * self.num_layers)

            # 0.0 LSTM1 from Coef0 to Root0
            output_root_0, _ = rnn.rnn(cell, self.input_coef_0[:l],
                                       dtype=tf.float32, scope="root")

            yhat_root_0 = tf.matmul(output_root_0[-1], root_w) + root_b

            # 0.1. LSTM2 from Root0 to Coef1
            input_root_0 = []
            for i in xrange(l):
                input_root_0.append(
                        tf.concat(1, [self.input_coef_0[i], yhat_root_0]))

            output_coef_0, _ = rnn.rnn(cell, input_root_0,
                                       dtype=tf.float32, scope="fact")

            # 1.0 LSTM1 from Coef1 to Root1
            input_coef_1 = []
            for i in xrange(l - 1):
                input_coef_1.append(tf.matmul(output_coef_0[i], fact_w) +
                                    fact_b)

            tf.get_variable_scope().reuse_variables()
            output_root_1, _ = rnn.rnn(cell, input_coef_1,
                                       dtype=np.float32, scope="root")
            yhat_root_1 = tf.matmul(output_root_1[-1], root_w) + root_b

            # 1.1. LSTM2 from Root1 to Coef2
            input_root_1 = []
            for i in xrange(l - 1):
                input_root_1.append(
                        tf.concat(1, [input_coef_1[i], yhat_root_0]))
            output_coef_1, _ = rnn.rnn(cell, input_root_1,
                                       dtype=tf.float32, scope="fact")

            # 2.0. LSTM1 from Coef2 to Root 2
            input_coef_2 = []
            for i in xrange(l - 2):
                input_coef_2.append(tf.matmul(output_coef_1[i], fact_w) +
                                    fact_b)
            output_root_2, _ = rnn.rnn(cell, input_coef_2,
                                       dtype=np.float32, scope="root")
            yhat_root_2 = tf.matmul(output_root_1[-1], root_w) + root_b
            self.yhat.append(tf.concat(1, [yhat_root_0, yhat_root_1,
                                           yhat_root_2]))

            loss = .55 * mean_squared_error(self.target[0], yhat_root_0) + \
                .27 * mean_squared_error(self.target[1], yhat_root_1) + \
                .18 * mean_squared_error(self.target[2], yhat_root_2)
            r2 = np.min([r2_score(self.target[0], yhat_root_0),
                        r2_score(self.target[1], yhat_root_1),
                        r2_score(self.target[2], yhat_root_2)])

            self.losses.append(loss)
            self.r2.append(r2)
            self.params = tf.trainable_variables()
            grads = tf.gradients(loss, self.params)
            grads, norm = tf.clip_by_global_norm(grads, self.max_grad_norm)
            self.grad_norms.append(norm)
            self.updates.append(tf.train.AdamOptimizer(self.learning_rate,
                                epsilon=1e-4).apply_gradients(
                                    zip(grads, self.params),
                                    global_step=self.global_step))

        self.saver = tf.train.Saver(tf.all_variables())
示例#35
0
    def __init__(self, learning_rate, input_dim, hidden_dim, output_dim,
                 num_layers, max_grad_norm, seq_lens, is_seq_output=False):
        self.learning_rate = learning_rate
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
        self.num_layers = num_layers
        self.max_grad_norm = max_grad_norm
        self.seq_lens = seq_lens
        self.is_seq_output = is_seq_output

        np.random.seed(FLAGS.seed)
        tf.set_random_seed(FLAGS.seed)
        self.inputs = []
        if self.is_seq_output:
            self.target = []
        else:
            self.target = tf.placeholder(tf.float32, [None, self.output_dim],
                                         name="target")
        for l in xrange(self.seq_lens[-1]):
            self.inputs.append(
                tf.placeholder(
                    tf.float32,
                    [None, self.input_dim], name="inp{0}".format(l)))
            if self.is_seq_output:
                self.target.append(tf.placeholder(tf.float32,
                                   [None, self.output_dim],
                                   name="tar{0}".format(l)))

        self.updates = []
        self.losses = []
        self.grad_norms = []
        self.r2 = []
        softmax_w = tf.get_variable("softmax_w", [self.hidden_dim,
                                    self.output_dim])
        softmax_b = tf.get_variable("softmax_b", [self.output_dim])

        for l in self.seq_lens:
            logger.info("Creating RNN model for sequence length %d", l)
            if l > self.seq_lens[0]:
                tf.get_variable_scope().reuse_variables()

            lstm_cell = rnn_cell.BasicLSTMCell(self.hidden_dim)
            # lstm_cell = rnn_cell.BasicRNNCell(self.hidden_dim)
            cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * self.num_layers)
            output, state = rnn.rnn(cell, self.inputs[:l], dtype=tf.float32)

            if self.is_seq_output:
                loss_list = []
                r2_list = []
                for out, tar in zip(output, self.target[:l]):
                    yhat = tf.matmul(out, softmax_w) + softmax_b
                    loss_list.append(mean_squared_error(tar, yhat))
                    r2_list.append(r2_score(tar, yhat))
                loss = tf.python.math_ops.add_n(loss_list) / l
                r2 = tf.python.math_ops.add_n(r2_list) / l
            else:
                yhat = tf.matmul(output[-1], softmax_w) + softmax_b
                loss = mean_squared_error(self.target, yhat)
                if self.output_dim == 1:
                    r2 = r2_score(self.target, yhat)
                else:
                    r2 = r2_scores(self.target, yhat)
            self.losses.append(loss)
            self.r2.append(r2)
            params = tf.trainable_variables()
            grads = tf.gradients(loss, params)
            grads, norm = tf.clip_by_global_norm(grads, self.max_grad_norm)
            self.grad_norms.append(norm)
            self.updates.append(
                tf.train.AdamOptimizer(
                    self.learning_rate,
                    epsilon=1e-4).apply_gradients(zip(grads, params)))