示例#1
0
    def S_non(self):
        xm = medianArray(self.nu_arr)
        z, L0, a = self.red_g, self.L_g, self.index_g
        y = np.ones(len(xm) - 1)
        for i, xi in enumerate(xm[:-1]):
            #y[i]=Int_S(self.nu_arr[i],self.nu_arr[i+1],8.0,23.0,z_g)
            y[i] = Int_S_N(xm[i], xm[i + 1], a, z, L0)

        return y
示例#2
0
    def S_P(self, z, L0, a):
        xm = medianArray(self.nu_arr)  #defualt is los 4: 1st try 2,3,noda()
        Sn011 = np.array([
            Int_S_EoR(xm[i], xm[i + 1], a, z, L0, self.xi_z, self.d_z,
                      self.Ts_z, i) for i in range(len(xm[:-1]))
        ])

        Sn1_av = (Sn011)
        return Sn1_av
示例#3
0
def writeCountsFile(output,bins,fluxes,area,idl_style=None,\
                    version=2,verbose=None,corrs=None):
    """
    Write an array of fluxes to a binned counts file
    """

    # Test version
    if version < 2: return '***Unsupported!!'

    # Bin up the fluxes
    counts=numpy.histogram(fluxes,bins=bins)[0]
    N=len(fluxes)
    print '-> %i/%i objects observed in total (after binning)\n' % (counts.sum(),N)
    
    # Calculate differential counts
    idl_style=False
    dn_by_ds,dn_by_ds_eucl,dn_by_ds_errs,dn_by_ds_b,dn_by_ds_b_errs=\
      calculateDnByDs(1.0e-6*bins,counts,idl_style=idl_style,return_all=True)

    median_bins=medianArray(bins) # uJy
    NB=len(median_bins)

    # Set up the corrections
    if corrs is None:
        corrs=numpy.ones(NB)

    if output is not None:
        outputf=output
        s=open(outputf,'w')
        if version < 2:
            header='# bin_median ksRaw ksNoisy'
        else:
            header='# bin_low_uJy bin_high_uJy bin_median_uJy Ns_tot_obs dnds_srm1Jym1 dnds_eucl_srm1Jy1p5 delta_dnds_eucl_lower_srm1Jy1p5 delta_dnds_eucl_upper_srm1Jy1p5 corr Ncgts_degm2 dNcgts_lower_degm2 dNcgts_upper_degm2'
        s.write('%s\n'%header)
        if verbose: print header
        for ibin in range(NB):
            if version < 2:
                line='%f %i %i' % (median_bins[ibin],-99.0,counts[ibin])
            else:
                line='%f %f %f %i %e %e %e %e %f %i %i %i' % \
                  (bins[ibin],bins[ibin+1],median_bins[ibin],round(counts[ibin]),\
                   dn_by_ds[ibin]/(sqDeg2sr*area),\
                   dn_by_ds_eucl[ibin]/(sqDeg2sr*area),\
                   dn_by_ds_errs[ibin]/(sqDeg2sr*area),\
                   dn_by_ds_errs[ibin]/(sqDeg2sr*area),\
                   corrs[ibin],\
                   round(counts[ibin:].sum()*1.00/area),\
                   round(numpy.sqrt(counts[ibin:].sum()*1.00/area)),\
                   round(numpy.sqrt(counts[ibin:].sum()*1.00/area)))
            s.write('%s\n'%line)
            if verbose: print line
        print counts.sum()
        s.close()

        print 'Look in %s' % outputf

    return
示例#4
0
 def Con(self):
     z, L0, a = self.red_g, self.L_g, self.index_g
     t, Dnu = self.t_int, self.Dnu
     xm = medianArray(self.nu_arr)
     ssg = np.array([sig_s(jj, Dnu, t) for jj in xm[:-1]])
     Sn014 = np.array([
         Int_S_EoR(xm[i], xm[i + 1], a, z, L0, self.xi_z4, self.d_z4,
                   self.Ts_z4, i) for i in range(len(xm[:-1]))
     ])
     #Sn014  =  np.array( [ S_n1(xm[i],z,L0,a)*A(z,(1420.4/xm[i])-1.0,self.xi_z4,self.d_z4,self.Ts_z4,i) for i in range(len(xm[:-1])) ]  )
     return (self.nu_arr), Sn014, ssg
示例#5
0
    def Mod(self, A, B, z, L0, a):
        t, Dnu = self.t_int, self.Dnu
        xm = medianArray(self.nu_arr)
        ssg = np.array([sig_s(jj, Dnu, t) for jj in xm[:-1]])
        #Sn014  =  np.array( [ S_n1(xm[i],z,L0,a)*Snu_Model_A(xm[i],A,B,z) for i in range(len(xm[:-1])) ]  )
        #Sn014  =  np.array( [ Int_S(xm[i],xm[i+1],A,B,z,a,L0)   for i in range(len(xm[:-1])) ]  )
        Sn014 = np.array([
            Int_S(xm[i], xm[i + 1], A, B, z, a, L0)
            for i in range(len(xm[:-1]))
        ])

        return Sn014
示例#6
0
def N2C(function, deviates, Smin, Smax, numbins):
    """
    Since C is a function of the number of deviates N drawn from the
    function, calculate what the ratio is and return it
    """
    A = integrate.quad(function, Smin, Smax)[0]
    #   print A,N
    # Bin the random samples
    bbins = numpy.linspace(Smin, Smax, numbins)
    E = numpy.histogram(deviates, bins=bbins)[0]
    # And calculate their area
    G = integrate.trapz(E, x=medianArray(bbins))

    return numbins * G / A
示例#7
0
def calculateDnByDs(bins,counts,eucl=False,verbose=False,idl_style=True,
                    errors=False,bright=False,bright_errors=False,
                    return_all=False):
    """

    This function expects bins to be in Jy
    The output units are Jy^-1, or Jy^1.5 if eucl=True

    The function is area-agnostic: sr^-1 -> sr^-1, deg^-2 -> deg^-2 etc.

    Be careful with units:
       e.g. if bins are in uJy, dn_by_ds will be uJy^-1   = 10^6 Jy
                                dn_ny_ds_eucl in uJy^1.5  = 10^-9 Jy
    etc.
    """

    dn=counts
    Smed=medianArray(bins)
    ds=numpy.absolute(numpy.gradient(Smed))

    if idl_style:
        # i.e. the way DERIV.PRO does it
        ds[0] = abs(-3.0*Smed[0] + 4.0*Smed[1] - Smed[2] / 2.0)
        ds[-1] = abs(3.0*Smed[-1] - 4.0*Smed[-2] + Smed[-3] / 2.0)

    if verbose:
        print 'dn',dn
        print 'ds',ds

    if return_all:
        return dn/ds, (Smed**2.5) * dn/ds,\
          (Smed**2.5) * numpy.sqrt(dn)/ds,\
          (Smed**2.0) * dn/ds,\
          (Smed**2.0) * numpy.sqrt(dn)/ds

    if eucl:
        dn_by_ds = (Smed**2.5) * dn/ds
    elif errors:
        dn_by_ds = (Smed**2.5) * numpy.sqrt(dn)/ds
    elif bright:
        dn_by_ds = (Smed**2.0) * dn/ds
    elif bright_errors:
        dn_by_ds = (Smed**2.0) * numpy.sqrt(dn)/ds
    else:
        dn_by_ds = dn/ds

    return dn_by_ds
示例#8
0
def myloglike(cube, ndim, nparams):
    global yi, x, xm, y, notInited, sg, bb, cc
    if notInited:

        zin, Li, ai = float(sys.argv[-4]), float(sys.argv[-3]), float(
            sys.argv[-2])
        F = AB.FLUX(zin, Li, ai)
        bb, cc = zip(*AB.Memoize(r).memo.items())
        y = F.Result()[1]  #
        x = F.Result()[0]  #
        xm = medianArray(x)
        sg = F.Result()[
            2]  #np.array( [ sig_s(i,dnu,T_int) for i in xm[:-1] ]  )
        np.random.seed(1234)
        yi = y + np.random.normal(0.0, sg)  #input data + random.noramal noise
        notInited = False

    loglike = 0.0

    for idatum in range(len(xm[:-1])):
        data = yi[idatum]
        zfit = cube[0]
        B = cube[1]
        K = cube[2]
        amp = cube[3]
        a = cube[5]
        model = Int_S(xm[idatum], xm[idatum + 1], B, K, zfit, a, amp)
        if model < 0.0:
            print '+',
            return -1.0e99
        #print model
        sigma = cube[4] * sg[idatum]
        chisq = 0.5 * ((data - model) / sigma)**2.0
        prefactor = 0.5 * log(2.0 * pi * sigma**2.0)
        loglike -= prefactor + chisq
    return loglike
示例#9
0
def simulate(family,params,paramsList,bins,\
             seed=None,N=None,noise=None,output=None,\
             dump=None,version=2,verbose=False,area=None,\
             skadsf=None,pole_posns=None,simarrayf=None,\
             simdocatnoise=True):
    """
    Based on lumfunc.simtable()
    Specify family + parameters
    Specify number of sources
    Build CDF (or set up function)
    Draw deviates
    Sample CDF given deviates
    Add noise (None or some value)
    Bin
    Write out
    Return

    Look at simulate.ipynb for an example run

    Need to add normalization capability
    
    Families:
    ========

    skads:
    -----

    r=countUtils.simulate('skads',[0.01,85.0],['S0','S1'],numpy.linspace(-60.0,100.0,26),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)
    
    ppl:
    ---

    r=countUtils.simulate('ppl',[1000.0,5.0,75.0,-1.6],['C','S0','S1','a0'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)

    r=countUtils.simulate('ppl',[1000.0,5.0,25.0,75.0,-1.6,-2.5],['C','S0','S1','S2','a0','a1'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)

    r=countUtils.simulate('ppl',[1000.0,5.0,25.0,40.0,75.0,-1.6,-2.5,-1.0],['C','S0','S1','S2','S3','a0','a1','a2'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)

    r=countUtils.simulate('ppl',[1000.0,5.0,25.0,40.0,75.0,90.0,-1.6,-2.5,-1.0,2.0],['C','S0','S1','S2','S3','S4','a0','a1','a2','a3'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)

    poly:
    ----

    r=countUtils.simulate('poly',[5.0,75.0,1.0],['S0','S1','p0'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)

    r=countUtils.simulate('poly',[5.0,75.0,1.0,-1.0],['S0','S1','p0','p1'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)
    
    r=countUtils.simulate('poly',[5.0,75.0,1.0,-1.0,5.0],['S0','S1','p0','p1','p2'],numpy.linspace(-20.0,100.0,22),seed=1234,N=40000,noise=17.0,dump='R.txt',output='dummy.txt',verbose=True)
    
    bins:
    ----

    

    test:
    ----

    array:
    -----


    """

    # Initialize seed for variates AND any noise
    if seed is not None:
        numpy.random.seed(seed=SEED_SIM)

    if family == 'ppl':
        C = alpha = Smin = Smax = beta = S0 = gamma = S1 = delta = S2 = -99.0
        nlaws = int(0.5 * len(paramsList) - 1)
        C = params[paramsList.index('C')]
        Smin = params[paramsList.index('S0')]
        alpha = params[paramsList.index('a0')]
        if nlaws > 1:
            beta = params[paramsList.index('a1')]
            S0 = params[paramsList.index('S1')]
        if nlaws > 2:
            gamma = params[paramsList.index('a2')]
            S1 = params[paramsList.index('S2')]
        if nlaws > 3:
            delta = params[paramsList.index('a3')]
            S2 = params[paramsList.index('S3')]
        iSmax = int([i for i in paramsList if i.startswith('S')][-1][-1])
        Smax = params[paramsList.index('S%i' % iSmax)]

        function = lambda S:powerLawFuncWrap(nlaws,S,C,alpha,-99.0,beta,\
                                      Smin/1e6,Smax/1e6,S0/1e6,gamma,S1/1e6,delta,S2/1e6,1.0)

    elif family == 'test':
        Smin = params[paramsList.index('S0')]
        Smax = params[paramsList.index('S1')]
        function = lambda S: S**2

    elif family == 'poly':
        Smin = params[paramsList.index('S0')]
        Smax = params[paramsList.index('S1')]
        coeffs = [
            params[paramsList.index(p)] for p in paramsList
            if p.startswith('p')
        ]
        S_1 = 1.0
        function = lambda S: polyFunc(S, S_1, Smin, Smax, coeffs)

    elif family == 'bins':
        Smin = params[paramsList.index('S0')]
        Smax = params[paramsList.index('S1')]
        coeffs = [
            params[paramsList.index(p)] for p in paramsList
            if p.startswith('b')
        ]
        if pole_posns is None:
            pole_posns = numpy.logspace(numpy.log10(Smin), numpy.log10(Smax),
                                        len(coeffs) + 1)
        assert (len(coeffs) == len(pole_posns) -
                1), '***Mismatch in number of poles!!'
        Smin = pole_posns[0]
        Smax = pole_posns[-1]
        function = lambda S: polesFunc(S, pole_posns, Smin, Smax, coeffs)

    elif family == 'array':
        Smin = params[paramsList.index('S0')]
        Smax = params[paramsList.index('S1')]
        assert (simarrayf
                is not None), '***Need to specify an input simulation!'
        print 'Reading %s...' % simarrayf
        dataMatrix = numpy.genfromtxt(simarrayf)
        dndsInArr = dataMatrix[:, 4]
        binsDogleg = numpy.concatenate((dataMatrix[:, 0], [dataMatrix[-1, 1]]))
        binsMedian = dataMatrix[:, 2]
        assert ((
            medianArray(binsDogleg) == binsMedian).all()), '***bin mismatch!'
        Smin = binsDogleg[0]
        Smax = binsDogleg[-1]
        if not simdocatnoise:
            Smin = -5.01  #-2.01 # binsMedian[0]
        print dndsInArr
        function = lambda S: arrayFunc(S, binsMedian, dndsInArr, Smin, Smax)

        #function2=lambda S:arrayFunc(S,binsMedian,dndsInArr,Smin,Smax)
        #for x in numpy.linspace(-10.0,100.0,500):
        #    print x,function(x),function2(x)
        #sys.exit(0)

    elif family == 'skads':
        Smin = params[paramsList.index('S0')]
        Smax = params[paramsList.index('S1')]
        function = None
        assert (skadsf is not None), '***Need to specify input SKADS file!'
        print 'Reading %s...' % skadsf
        R = Jy2muJy * 10**numpy.genfromtxt(skadsf)
        numpy.ndarray.sort(R)
        iRmin, Rmin = find_nearest(R, Smin)
        iRmax, Rmax = find_nearest(R, Smax)
        F = R[iRmin:iRmax]
        print '%i/%i sources ingested after Smin/Smax cuts' % (len(F), len(R))
        if N is not None:
            F = numpy.random.choice(F, size=N, replace=False)
        N = len(F)
        print 'NSKADS = %i' % N

    elif family == 'Lrad':
        Smin = params[paramsList.index('LoptMIN')]
        Smax = params[paramsList.index('LoptMAX')]
        A = params[paramsList.index('A')]
        B = params[paramsList.index('B')]
        sigma_Lrad = params[paramsList.index('sigma_Lrad')]
        #print Loptmin,Loptmax
        print 'Doing LF simulation'
        inta = None
        #intg = integrate.quad(lambda Lopt:Lopt2Lrad(Lopt,A=A,B=B,flux=False),Loptmin,Loptmax,epsabs=0.)[0]

        function = lambda Lopt: Lopt2Lrad(Lopt, A=A, B=B, flux=False)
    elif family in ['LFsch', 'LFdpl']:
        redshift = 0.325
        z_min = 0.2
        z_max = 0.45
        Lmin = params[paramsList.index('LMIN')]
        Lmax = params[paramsList.index('LMAX')]
        [Smin, Smax] = SMIN_SIM, SMAX_SIM
        print Smin, Smax
        [Smin, Smax] = get_sbins([10**Lmin, 10**Lmax], redshift, dl) * 1e6
        print Smin, Smax, Lmin, Lmax
        print 'Doing LF simulation'
        Vmax = get_Vmax(z_min, z_max)
        dsdl = get_dsdl(redshift, dl)
        inta = None
        intg = integrate.quad(lambda S:LF(S,redshift,dsdl,Vmax,dl,params=params,paramsList=paramsList,\
                inta=inta,area=area,family=family),Smin*1e-6,Smax*1e-6,epsabs=0.)[0]
        print intg * Vmax
        print Vmax
        area = N / (Vmax * intg)
        area1 = area
        print N, area

        function = lambda S:dNdS_LF(S,z_min,redshift,z_max,dl,params=params,paramsList=paramsList,\
                area=area,family=family)

    if family != 'skads':
        # Set up the 'rough' array
        gridlength = 10000  # Good enough to prevent bleeding at the edges
        Ss = numpy.linspace(Smin, Smax, gridlength)
        print Smin, Smax
        print 'checking for one sample'
        kl = function(20 / 1e6)
        print kl
        #sys.exit()
        values = numpy.array([function(ix / 1e6) for ix in Ss])
        print values[:10]
        # Build the CDF
        CDF = buildCDF(values)
        plt.plot(CDF, Ss)
        #plt.xscale('log')
        #plt.yscale('log')
        plt.ylabel('Flux')
        plt.xlabel('CDF')
        plt.show()
        print CDF.max()
        # Create the interpolant object
        sampler = interp1d(CDF, Ss)

        plt.plot(Ss, values, '.')
        plt.xscale('log')
        plt.yscale('log')
        plt.xlabel('Flux')
        plt.ylabel('LF')
        plt.show()

        x = numpy.linspace(0., 1., 10000)
        z = numpy.logspace(0, 1, 1000) / 10.
        f = sampler(z)
        y = sampler(x)
        plt.yscale('log')
        #plt.xscale('log')
        plt.axhline(Smin)
        plt.axhline(Smax)
        plt.xlabel('R')
        plt.ylabel('Sampler(R) [flux]')
        #plt.plot(x,y)
        plt.plot(z, f)
        plt.show()
        #sys.exit()

        # Test that the sampler extrema match
        print Smin, sampler(0.0), 'you know wa mean'
        print Smax, sampler(0.99999)
        #        assert(numpy.isclose(sampler(0.0),Smin)[0])
        #        assert(numpy.isclose(sampler(0.99999),Smax,atol=1.0e-3)[0])

        # Draw the random deviates
        R = numpy.random.rand(N)
        print len(R)
        F = sampler(R)
        Nt = 0.
        for f in F:
            if f < 1.:
                Nt += 1.
        F = F[F > 1.]
        print N, Nt
        print len(F)
        Nt = len(F)
        #sys.exit()

        # Normalize here - this is N2C
        # EITHER N is specified explicitly
        # BOTH N2C and C2N are useful
        # Integrate the original function
        #intg = integrate.quad(lambda S:LF(S,redshift,dsdl,Vmax,dl,params=params,paramsList=paramsList,\
        #    inta=inta,area=area,family=family),Smin*1e-6,Smax*1e-6,epsabs=0.)[0]
        #print intg*Vmax
        #print Vmax
        #area = Nt/(Vmax*intg)
        #print N,area,area1
        #plt.show()
        #sys.exit()
        A = integrate.quad(function, Smin, Smax)[0]
        #        print A,N
        # Bin the random samples
        bbins = numpy.linspace(Smin, Smax, 100)
        E = numpy.histogram(F, bins=bbins)[0]
        # And calculate their area
        G = integrate.trapz(E, x=medianArray(bbins))
        #        print G
        #        print G/A
        # Gunpowder, treason and....
        if False:
            plt.xlim(0.0, 100.0)
            plt.xlabel('S / $\mu$Jy')
            plt.hist(F, bins=bbins)
            plt.plot(Ss, values * G / A, 'r')
            plt.savefig('N2C.pdf')
            plt.close()

    # Want: C given N, to compare to original C
    numbins = 1000
    if family == 'ppl':
        C_calc = N / N2C(function, F, Smin, Smax, numbins)
        #print N2C(function,F,Smin,Smax,numbins),C
        print 'For %i sources, C is %e (should be %e)' % (N, C_calc, C)
    elif family == 'poly':
        C_calc = log10(N / N2C(function, F, Smin, Smax, numbins))
        print 'For %i sources, C is %e (should be %e)' % (N, C_calc, coeffs[0])

    # Dump noiseless fluxes to file
    puredumpf = dump
    idl_style = False
    numpy.savetxt(puredumpf, F)
    print 'Draws (noiseless) are in %s' % puredumpf
    writeCountsFile(output[1],
                    bins,
                    F,
                    area,
                    idl_style=idl_style,
                    verbose=verbose)
    print output[1]
    # Now add noise if requested
    if simdocatnoise:
        numpy.random.seed(seed=SEED_SIM)
        poln = False
        if poln:
            F += rice.rvs(F / noise, size=N)
        else:
            F += numpy.random.normal(0.0, noise, Nt)

    # Dump noisy fluxes to file
    if dump is not None:
        noisydumpf = '%s_noisy.txt' % puredumpf.split('.')[0]
        numpy.savetxt(noisydumpf, F)
        print 'Draws (noisy) are in %s' % noisydumpf
        print 'Minimum flux in catalogue = %f' % F.min()
        print 'Maximum flux in catalogue = %f' % F.max()

    # Write counts file
    print output[0]
    writeCountsFile(output[0],
                    bins,
                    F,
                    area,
                    idl_style=idl_style,
                    verbose=verbose)
    print N, area  #,area1

    return F
示例#10
0
    def __init__(self,kind,order,settingsf,whichSurvey,floatNoise,doPoln=False,\
                 doRayleigh=False,doRedshiftSlices=False,mybins=None):
        # Import settings
        print 'Settings file is %s' % settingsf
        set_module = importlib.import_module(settingsf)
        globals().update(set_module.__dict__)

        # Set up model
        self.kind = kind
        self.name = kind
        self.order = order
        self.nlaws = order
        self.model = model(self.kind)
        self.floatNoise = floatNoise
        self.doPoln = doPoln
        self.doRayleigh = doRayleigh
        self.doRedshiftSlices = doRedshiftSlices
        if self.doRedshiftSlices:
            self.zDataObject = dataSetup('sdss',
                                         zmanifestf,
                                         redshiftSlices=self.doRedshiftSlices)
            self.redshifts = redshifts

        # Set up parameters for this model
        # --> This defines the order of the parameters:
        self.paramsAvail=\
                    OrderedDict([('extra',['noise']),\
                     ('evol',['A_agn','A_SF','B_agn','B_SF']),\
                     ('evol_SF',['A_SF','B_SF']),\
                     ('evol_mat',['A_SF','A_agn']),\
                     ('evol_el',['A_SF','A_agn']),\
                     ('evol_sl',['A_SF','A_agn','LSLOPE2_2']),\
                     ('evol_sg',['A_SF','A_agn','LSIGMA']),\
                     ('evol_ls',['A_SF','A_agn','LMIN2']),\
                     ('evol_ph',['A_SF','A_agn','LNORM','LSTAR']),\
                     ('evol_all',['LNORM','LSTAR','LSLOPE2_2','LSIGMA']),\
                     ('evol_phi',['A_D','B_D']),\
                     ('breaks',['S%i'%ic for ic in xrange(self.nlaws+1)]),\
                     ('amp',['C']),\
                     ('coeffs',['p%i'%ic for ic in xrange(self.nlaws)]),\
                     ('limits',['S%i'%ic for ic in xrange(2)]),\
                     ('Llimits',['LMIN_%i'%ic for ic in xrange(1,10)]),\
                     #('Llimits',['LMIN_%i'%ic for ic in xrange(1,5)]),\
                     ('llimits',['LMIN','LMAX']),\
                     ('poles',['b%i'%ic for ic in xrange(self.nlaws)]),\

                     ('slopes',['a%i'%ic for ic in xrange(self.nlaws)]),\
                     #('schechter',['LMIN','LMAX','LNORM','LSTAR','LSLOPE','LZEVOL']),\
                     ('schechter',['LMIN','LMAX','LNORM','LSTAR','LSLOPE']),\
                     #('doublepl',['LMIN','LMAX','LNORM_2','LSTAR_2','LSLOPE_2','LSLOPE2_2'),\
                     ('powerlaw',['LMIN','LMAX','LNORM_2','LSTAR_2','LSLOPE_2']),\
                     ('doublepl',['LMIN','LMAX','LNORM_2','LSTAR_2','LSLOPE_2','LSLOPE2_2']),\
                     ('dpl_pl',['LMIN','LMAX2','LMIN2','LMAX','LNORM','LSTAR','LSLOPE','LSLOPE2','LNORM_2','LSTAR_2','LSLOPE_2']),\
       ('pl_dpl',['LMIN','LMAX2','LMIN2','LMAX','LNORM','LSTAR','LSLOPE','LSLOPE2','LNORM_2','LSTAR_2','LSLOPE_2']),\
                     ('dpl_dpl',['LMIN','LMAX2','LMIN2','LMAX','LNORM','LSTAR','LSLOPE','LSLOPE2','LNORM_2','LSTAR_2','LSLOPE_2','LSLOPE2_2']),\
                     ('lognorm',['LMIN','LMAX','LNORM_2','LSTAR_2','LSLOPE_2','LSIGMA']),\
                     ('lognorm_dpl',['LMIN','LMAX2','LMIN2','LMAX','LNORM','LSTAR','LSLOPE','LSLOPE2','LNORM_2','LSTAR_2','LSLOPE_2','LSIGMA']),\
                     ('pl_lognorm',['LMIN','LMAX2','LMIN2','LMAX','LNORM','LSTAR','LSLOPE','LNORM_2','LSTAR_2','LSLOPE_2','LSIGMA']),\
                     ('schechterM',['MMIN','MMAX','MNORM','MSTAR','MSLOPE','MZEVOL']),\
                     ('doubleplM',['MMIN','MMAX','MNORM','MSTAR','MSLOPE','MSLOPE2','MZEVOL'])])
        familyMap={'ppl':['breaks','slopes','amp','extra'],\
                   'poly':['limits','coeffs','extra'],\
                   'bins':['poles','extra'],\
                   'LFsch':['schechter','extra'],\
     'LFpl':['powerlaw','extra'],\
                   'LFdpl':['doublepl','extra'],\
                   'LFdpl_dpl':['dpl_dpl','extra'],\
                   'LFdpl_pl':['dpl_pl','extra'],\
                   'LFdpl_dpl_z':['dpl_dpl','evol','extra'],\
                   'LFevol' :['evol','llimits','extra'],\
                   'LFevol_dpl' :['evol','llimits','extra'],\
                   'LFevol_dpl_s' :['evol_SF','llimits','extra'],\
                   'LFevol_dpl_L':['Llimits','evol','llimits','extra'],
                   'LFevol_logn':['evol','llimits','extra'],\
                   'LFevol_logn_mat':['evol_mat','llimits','extra'],\
                   'LFevol_logn_el':['evol_el','llimits','extra'],\
                   'LFevol_logn_slope':['evol_sl','llimits','extra'],\
                   'LFevol_logn_sigma':['evol_sg','llimits','extra'],\
                   'LFevol_logn_lmin':['evol_ls','llimits','extra'],\
                   'LFevol_logn_lnorm':['evol_ph','llimits','extra'],\
                   'LFevol_logn_all':['evol','evol_all','llimits','extra'],\
                   'LFevol_logn_all_L':['Llimits','evol','evol_all','llimits','extra'],\
                   'LFevol_logn_s':['evol_SF','llimits','extra'],\
                   'LFevol_logn_L':['Llimits','evol','llimits','extra'],
                   'LFevol_phi_logn':['evol','evol_phi','llimits','extra'],\
                   'LFevol_phi_logn_mat':['evol_mat','evol_phi','llimits','extra'],\
     'LFpl_dpl':['pl_dpl','extra'],\
                   'LFlognorm_dpl':['lognorm_dpl','extra'],\
                   'LFlognorm':['lognorm','extra'],\
                   'LFpl_lognorm':['pl_lognorm','extra'],\
                   'HIsch':['schechterM','extra'],\
                   'HIdpl':['doubleplM','extra']}
        self.paramsStruct=\
          [self.paramsAvail[p] for p in self.paramsAvail if p in familyMap[kind]]
        self.parameters = list(itertools.chain(*self.paramsStruct))
        self.nparams = len(self.parameters)
        #print self.nparams,self.parameters
        self.currentPhysParams = -99.0 * numpy.ones(self.nparams)

        # Set up priors
        self.priors = Priors()
        self.priorsDict = self.parsePriors(self.parameters, self.floatNoise)

        # Load the data and derive the bins
        self.survey = surveySetup(whichSurvey, [datafiles], [SURVEY_AREA],
                                  [SURVEY_NOISE])
        if doRedshiftSlices:
            # And load any multiple data sets
            self.fdata = {}
            self.fbins = {}
            self.fnbins = {}
            self.fbinsMedian = {}
            for df in self.survey.datafiles[0]:
                self.fdata[df], self.fbins[df] = self.loadData(df)
                #print df
                #print self.fdata[df]
                #print self.fbins[df]

                self.fnbins[df] = len(self.fbins[df]) - 1
                self.fbinsMedian[df] = medianArray(self.fbins[df])

            self.binsMedian = self.fbinsMedian[df]
            self.bins = self.fbins[df]
            self.data = self.fdata[df]
            self.nbins = self.fnbins[df]
        else:
            print self.survey.datafile
            self.data, self.bins = self.loadData(self.survey.datafile[0])
            print 'different?', self.data, self.survey.datafile
            self.nbins = len(self.bins) - 1
            self.binsMedian = medianArray(self.bins)
            self.nsrc = int(self.data.sum())

        if mybins is not None:
            self.bins = mybins
            self.binsMedian = medianArray(self.bins)
            self.nbins = len(self.bins) - 1

        return
示例#11
0
    def S_N(self, z, L0, a, Dnu, t_int):
        xm = medianArray(self.nu_arr)
        ssg = np.array([sig_s(jj, Dnu, t_int) for jj in xm[:-1]])
        #tt   = np.array( [ Int_ST(xm[i],xm[i+1],a,z,L0,self.xi_z2,self.d_z2,self.Ts_z2,i)  for i in range(len(xm[:-1])) ]  )

        return (self.nu_arr), self.S_P(z, L0, a), ssg  #,tt
示例#12
0
def main():
    """
    """

    print 'Settings file is %s' % setf

    # Import the settings variables
    set_module = importlib.import_module(setf)
    globals().update(set_module.__dict__)

    expt = countModel(modelFamily,
                      nlaws,
                      setf, [dataset],
                      floatNoise,
                      doRedshiftSlices=True)
    #recon_expt=countModel(modelFamily,nlaws,setf,[dataset],floatNoise)
    #print expt.data
    #print expt.bins

    # Get MAP parameters
    print '\n' * 5
    print len(expt.parameters)
    ncols = len(expt.parameters)
    summf = os.path.join(outdir, '1-summary.txt')
    summary = numpy.genfromtxt(summf)[-1, :]
    drawmap = summary[-(ncols + 2):-2]
    ana=pymultinest.analyse.Analyzer(ncols-1,\
        outputfiles_basename=os.path.join(outdir,outstem))
    drawmap = ana.get_best_fit()['parameters']

    if dataset == 'sdss':
        print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf) == 20:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d = numpy.genfromtxt('%s/%s' % (outdir, datafiles[0][4:]))
        print datafiles[0][4:]
    elif dataset == 'cosmos':
        print datafiles, len(datafiles[0])
        dataf = datafiles[0]
        if len(dataf) == 24:
            num = dataf[-5]
            print num
        else:
            num = dataf[-6:-4]
        d = numpy.genfromtxt('%s/%s' % (outdir, datafiles[0][8:]))
        print datafiles[0][8:]

    elif 'sim' in dataset:
        d = numpy.genfromtxt(os.path.join(outdir, 'sim.txt'))

    #bins2 = numpy.arange(21.4,29.2,0.4)
    bins2 = numpy.arange(18.0, 29.2, 0.4)
    bins3 = numpy.arange(18., 29.2, 0.01)

    print len(expt.parameters)
    print 'this is 1st num ', num
    #sys.exit()
    params = drawmap  # [0]
    #for i in drawmap:
    #	params.append(i)
    print params
    print expt.parameters
    #novak 2017
    L_n = [21.77, 22.15, 22.46, 22.77, 23.09, 23.34]
    rho_n = [-2.85, -2.88, -3.12, -3.55, -4.05, -4.63]
    L_ner_u = [0.23, 0.18, 0.19, 0.2, 0.21, 0.28]
    L_ner_d = [1.1, 0.15, 0.14, 0.12, 0.12, 0.048]
    rho_ner = [0.09, 0.03, 0.0355, 0.059, 0.1, 0.234]

    #novak 2018
    L_n2   =[[21.77,22.24,22.68,23.16,23.69,24.34, 24.74,25.56],\
             [22.30,22.61,22.96,23.38,23.80,24.10, 24.55,25.14],\
             [22.61,22.86,23.14,23.45,23.82,24.14, 24.40,24.71],\
             [22.85,23.16,23.69,24.24,24.80,25.31, 25.96,26.69],\
             [23.10,23.38,23.86,24.36,24.86,25.35, 25.94,26.36],\
             [23.32,23.57,23.94,24.32,24.67,25.06, 25.47,25.96],\
             [23.54,23.75,24.13,24.45,24.90,25.27, 25.74,26.10],\
             [23.73,23.99,24.57,25.10,25.68,26.18, 26.83,27.51],\
             [24.01,24.26,24.76,25.26,25.91,26.19, 27.45],\
             [24.30,24.56,24.80,25.13,25.37,25.80, 25.97,26.49]]


    L_ner_u2  =[[0.23,0.27, 0.34, 0.37, 0.35, 0.21, 0.31, 0.03],\
                [0.11,0.20, 0.26, 0.25, 0.24, 0.35, 0.31, 0.15],\
                [0.08,0.15, 0.20, 0.22, 0.17, 0.18, 0.24, 0.28],\
                [0.072,0.33,0.38, 0.40, 0.48, 0.42, 0.41, 0.28],\
                [0.080,0.30,0.32, 0.32, 0.32, 0.33, 0.24, 0.34],\
                [0.068,0.22,0.24, 0.25, 0.29, 0.30, 0.28, 0.21],\
                [0.067,0.22,0.21, 0.26, 0.18, 0.17,0.075, 0.11],\
                [0.093,0.36,0.31, 0.30, 0.25, 0.28, 0.16,0.028],\
                [0.076,0.34,0.36, 0.38, 0.24, 0.47, 0.27],\
                [0.097,0.14,0.20, 0.16, 0.23, 0.092,0.22,0.026]]


    L_ner_d2  =[[1.0, 0.24, 0.17, 0.14, 0.16, 0.30, 0.20, 0.50],\
               [0.29, 0.21, 0.15, 0.16, 0.17, 0.06, 0.099,0.29],\
               [0.24, 0.17, 0.12, 0.10, 0.15, 0.15, 0.08,0.074],\
               [0.16, 0.24, 0.19, 0.17, 0.15, 0.09, 0.16, 0.33],\
               [0.30, 0.19, 0.18, 0.18, 0.18, 0.17, 0.26, 0.18],\
               [0.14, 0.18, 0.15, 0.14, 0.10, 0.095,0.11, 0.21],\
               [0.19, 0.14, 0.15, 0.11, 0.19, 0.19, 0.29, 0.28],\
               [0.40, 0.17, 0.21, 0.23, 0.27, 0.25, 0.37, 0.53],\
               [0.20, 0.17, 0.16, 0.14, 0.27, 0.042, 0.27],\
               [0.22, 0.16, 0.10, 0.14,0.072, 0.21, 0.08, 0.30]]

    rho_n2 =[[-2.84,-2.90,-3.34,-4.00,-4.92,-4.92, -5.22,-5.07],\
             [-2.95,-3.17,-3.46,-4.24,-4.76,-5.41, -5.23,-5.44],\
             [-2.95,-3.11,-3.44,-3.81,-4.37,-4.48, -4.90,-5.14],\
             [-2.99,-3.24,-3.89,-4.54,-5.27,-5.33, -5.69,-5.89],\
             [-3.32,-3.51,-4.06,-4.74,-5.28,-5.43, -6.08,-5.70],\
             [-3.29,-3.54,-4.02,-4.45,-5.11,-5.56, -5.37,-6.07],\
             [-3.43,-3.61,-4.19,-4.56,-5.09,-5.34, -5.70,-5.75],\
             [-3.88,-3.98,-4.64,-5.33,-5.73,-6.27, -6.14,-6.77],\
             [-3.85,-4.28,-5.05,-5.60,-5.68,-6.44, -6.59],\
             [-4.43,-4.91,-5.46,-5.58,-5.89,-6.23, -6.26,-6.91]]

    rho_ner_u2=[[0.08,0.024,0.038,0.083,0.28,0.28 , 0.45, 0.34],\
                [0.048,0.027,0.036,0.089,0.17,0.45, 0.34, 0.45],\
                [0.062,0.024,0.032,0.048,0.096, 0.11,0.18,0.25],\
                [0.042,0.018,0.035,0.073,0.180, 0.20,0.34,0.45],\
                [0.045,0.019,0.033,0.072,0.15,  0.17,0.45,0.25],\
                [0.040,0.022,0.033,0.055,0.13,  0.22,0.17,0.45],\
                [0.061,0.020,0.035,0.055,0.099, 0.14,0.22,0.25],\
                [0.044,0.022,0.044,0.11, 0.16, 0.34, 0.28,0.76],\
                [0.048,0.025,0.058,0.13, 0.24, 0.34, 0.45],\
                [0.084,0.058,0.11 ,0.24, 0.20, 0.28, 0.28,0.76]]

    rho_ner_d2=[[0.07,0.023,0.035,0.070,0.25,0.25 , 0.37, 0.30],\
                [0.043,0.026,0.033,0.074,0.16,0.37, 0.30, 0.37],\
                [0.054,0.023,0.030,0.043,0.079,0.086,0.17,0.22],\
                [0.038,0.017,0.032,0.062,0.17,0.19, 0.30, 0.37],\
                [0.041,0.019,0.031,0.062,0.11,0.16, 0.37, 0.22],\
                [0.037,0.021,0.031,0.049,0.098,0.20,0.16, 0.37],\
                [0.054,0.019,0.032,0.049,0.081,0.11,0.20, 0.22],\
                [0.040,0.021,0.040,0.085,0.15, 0.30, 0.25,0.52],\
                [0.043,0.024,0.051,0.10, 0.15, 0.30, 0.37],\
                [0.070,0.051,0.087,0.16,0.19, 0.25, 0.25, 0.52]]

    fig = plt.figure()
    pre_chain = 12
    pre_chain = '02'

    chains = [
        '01a_1', '01b', '01c', '01d', '01e', '01f_1', '01g', '01h', '01i'
    ]  #chains_2001 DR4
    chains = [
        '01a_4', '01b_2', '01c_2', '01d_2', '01e_2', '01f_2', '01g', '01h_2',
        '01i_2'
    ]  #chains_2001 DR4 remove phi2
    chains = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k']
    #z = [0, 0.5, 1 , 1.5, 2, 2.3, 2.6, 3, 3.5, 4] #old
    #z = [ 0.7, 1 , 1.35, 1.7, 2, 2.3, 2.6, 3, 3.5, 4]# older
    print expt.parameters
    n, m = 3, 3

    z_new = True
    Replot = False
    z_nov = [0.31, 0.5, 0.69, 0.9, 1.16, 1.44, 1.81, 2.18, 2.81, 3.71, 4.83]
    if z_new:
        z = [0.1, 0.3, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0]
        z = [0.1, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0]
        #chains=['11a','11b','11c_3','11d_3','11e_3','11f_3','11g_3','11h','11i','11j', '11k', '11l' ,'11m', '11n']#chains_201111
    else:
        z = [0.1, 0.4, 0.6, 0.8, 1.0, 1.3, 1.6, 2.0, 2.5, 3.2, 4.0]  #oldest ;)

    model = modelFamily
    if model in [
            'LFsch', 'LFdpl_pl', 'LFpl_dpl', 'LFdpl_dpl', 'LFdpl_dpl_z',
            'LFlognorm_dpl', 'LFpl_lognorm'
    ]:
        Lnorm = params[expt.parameters.index('LNORM')]
        Lstar = params[expt.parameters.index('LSTAR')]
        Lslope = params[expt.parameters.index('LSLOPE')]
        #Lzevol=params[expt.parameters.index('LZEVOL')]
    if model in [
            'LFdpl_pl', 'LFpl_dpl', 'LFdpl_dpl', 'LFdpl_dpl_z', 'LFlognorm_dpl'
    ]:
        Lslope2 = params[expt.parameters.index('LSLOPE2')]
    if model in [
            'LFlognorm', 'LFpl', 'LFdpl', 'LFdpl_pl', 'LFpl_dpl',
            'LFlognorm_dpl', 'LFpl_lognorm', 'LFdpl_dpl', 'LFdpl_dpl_z'
    ]:
        Lnorm_2 = params[expt.parameters.index('LNORM_2')]
        Lstar_2 = params[expt.parameters.index('LSTAR_2')]
        Lslope_2 = params[expt.parameters.index('LSLOPE_2')]

    if model in ['LFdpl_dpl', 'LFdpl', 'LFdpl_dpl_z']:
        Lslope2_2 = params[expt.parameters.index('LSLOPE2_2')]

    if model in ['LFlognorm', 'LFlognorm_dpl', 'LFpl_lognorm']:
        Lsigma = params[expt.parameters.index('LSIGMA')]

    if modelFamily in [
            'LFdpl_dpl_z', 'LFevol', 'LFevol_dpl', 'LFevol_logn',
            'LFevol_logn_L'
    ]:
        alpha_agn = params[expt.parameters.index('A_agn')]
        alpha_SF = params[expt.parameters.index('A_SF')]
        beta_agn = params[expt.parameters.index('B_agn')]
        beta_SF = params[expt.parameters.index('B_SF')]

    if modelFamily in ['LFevol_dpl_s', 'LFevol_logn_s']:
        alpha_SF = params[expt.parameters.index('A_SF')]
        beta_SF = params[expt.parameters.index('B_SF')]

    if modelFamily in ['LFevol_dpl_a', 'LFevol_logn_a']:
        alpha_agn = params[expt.parameters.index('A_agn')]
        beta_agn = params[expt.parameters.index('B_agn')]

    Lmin = params[expt.parameters.index('LMIN')]
    LMIN = params[expt.parameters.index('LMIN')]
    Lmax = params[expt.parameters.index('LMAX')]

    loglike = 0.
    loglike_nov = 0.
    print model

    bins3 = numpy.arange(15., 30.2, 0.2)
    #xbins  = numpy.arange(fsigma,26.2,0.4)#bin +0.2
    sbin4 = get_sbins(10**bins3, z[0], get_dl(z[0])) * 1e6
    expt2 = countModel(modelFamily,
                       nlaws,
                       setf, [dataset],
                       floatNoise,
                       doRedshiftSlices=True,
                       mybins=sbin4)
    sbin5 = medianArray(sbin4)
    phi_tot3 = expt2.evaluate(params)
    #print phi_tot3
    #print len(phi_tot3[0]), len(bins3)

    for num in range(1, 10):
        #num = 1.
        print num
        print 'new num ', num
        z_min, z_max, z_m = get_z(num, False)
        dl = get_dl(z_m)
        Vmax = get_Vmax(z_min, z_max)
        dsdl = get_dsdl(z_m, dl)

        #z_m = (z_min + z_max)/2
        dl = get_dl(z_m)

        print z_min, z_max, 'lmin ',

        SMIN = get_sbins(numpy.power(10, Lmin), z_m, dl) * 1e6
        SMAX = get_sbins(numpy.power(10, Lmax), z_m, dl) * 1e6
        sigma, fsigma, Lmin = numpy.log10(
            get_Lbins([SURVEY_NOISE, SURVEY_NOISE * 5, LMIN], z_m, dl, 'muJy')
            * (1.4 / 3)**(-.7))
        sigma2, fsigma2 = numpy.log10(get_Lbins([450, 2400], z_m, dl, 'muJy'))
        print Lmin
        print SURVEY_NOISE, SURVEY_NOISE * 5, SURVEY_AREA

        print num, '%s/recon_stats_%s.txt' % (outdir, chains[num - 1])
        s = numpy.loadtxt('%s/recon_stats_%s.txt' % (outdir, chains[num - 1]))
        print chains[num - 1]
        xrecon = s[:-1, 0]
        yrecon = s[:-1, 1]
        yrecon_d = s[:-1, 2]
        yrecon_u = s[:-1, 3]
        yrecon_rms = s[:-1, 4]
        yrecon_avr = s[:-1, 5]
        yrecon_rms_down = yrecon_rms

        #area = 6672*sqDeg2sr #143165.15  49996.49 59876.8861135
        sbin3 = get_sbins(10**bins2, z_m, dl) * 1e6
        #sbin4 = get_sbins(10**bins3,z_m,dl)*1e6

        xreco = get_Lbins(xrecon, z_m, dl, 'muJy')  #*(1.4/3)**(-.7)
        yreco = yrecon

        print SMIN, SMAX
        #sys.exit()
        lin_yrecon = numpy.log10(yreco)
        #print xrecon
        lin_xrecon = numpy.log10(xreco)

        #bins3 = numpy.arange(15.,30.,0.4)
        bins3 = numpy.log10(get_Lbins(sbin4, z_m, dl,
                                      'muJy'))  #*(1.4/3)**(-.7))
        #bins  = numpy.arange(fsigma,26.2,0.4)#bin +0.2
        #sbin4 = get_sbins(10**bins3,z_m,dl)*1e6
        if not os.path.isfile('cos_data/cos_s%s_LF.el' %
                              num) and z_new or not os.path.isfile(
                                  'cos_data/cos_s%s_LF_old.el' %
                                  num) and not z_new or Replot:
            print 'doing all calculations'
            #l,z_l = open_anytype('cos_data/cosmos_d1_0_8arc.txt',(12,21), F='uJy',L=True,getz=True)
            #l2,z_l2 = open_anytype('cos_data/cosmos_d1_0_8arc.txt',(12,24), F='uJy',L=True,getz=True)
            if z_new:
                L, z_L = open_anytype('cos_data/cos_s%s.txt' % num, (2, 3),
                                      F='uJy',
                                      L=True,
                                      getz=True,
                                      band='S')
                print 'this is the new z bins (please check if lumfuncUtils and cos_manifest are using the right z)'
            else:
                L, z_L = open_anytype('cos_data/cos_s%s_old.txt' % num, (2, 3),
                                      F='uJy',
                                      L=True,
                                      getz=True,
                                      band='S')
                print 'this is the old z binning style. (please check if lumfuncUtils and cos_manifest are using the right z)'
            L_c, z_c = open_anytype('cosmos_counter_parts_II.txt', (3, 4),
                                    [z_min, z_max],
                                    F='uJy',
                                    L=True,
                                    getz=True,
                                    band='S')
            z_c2, S_c2, L_c2 = numpy.loadtxt('cosmos_counter_parts_II.txt',
                                             unpack=True,
                                             usecols=(3, 4, 5))
            L_c2 = L_c2[(z_c2 < z_max) & (z_c2 > z_min)]
            S_c2 = S_c2[(z_c2 < z_max) & (z_c2 > z_min)]
            z_c2 = z_c2[(z_c2 < z_max) & (z_c2 > z_min)]

            #rho_1,er1 = calc_Vmax(calcu_zeff(z_l,l,11.5e-32),l,bins,z_max,z_min,area)
            #rho_2,er2 = calc_Vmax(calcu_zeff(z_l2,l2,11.5e-32),l2,bins,z_max,z_min,area)
            rho_3, er3 = calc_Vmax(calcu_zeff(z_L, L, 1.15e-31), L, bins,
                                   z_max, z_min, area)
            #rho_4,er4 = calc_Vmax(99.,L,bins2,z_max,z_min,area)
            rho_5, er5 = calc_Vmax(calcu_zeff(z_c, L_c, 1.15e-31), L_c, bins,
                                   z_max, z_min, area)
            rho_6, er6 = calc_Vmax(calcu_zeff(z_c2, 10**L_c2, 1.15e-31),
                                   10**L_c2, bins, z_max, z_min, area)
            if z_new:
                f = open('cos_data/cos_s%s_LF.el' % num, 'w')
            else:
                f = open('cos_data/cos_s%s_LF_old.el' % num, 'w')
            for i in range(len(bins)):
                f.write('%5.1f %5.3f %5.3f %5.3f %5.3f %5.3f %5.3f\n' %
                        (bins[i], rho_3[i], er3[i], rho_5[i], er5[i], rho_6[i],
                         er6[i]))
            f.close()

            dl_c = get_dl(z_c2)
            L_c3 = numpy.log10(
                get_Lbins(S_c2, z_c2, numpy.array(dl_c), 'muJy') *
                (1.4 / 3.)**(-.7))
        else:
            if z_new:
                #bins,rho_3,er3,rho_5,er5,rho_6,er6 = numpy.loadtxt('cos_data/cos_s%s_LF.el'%num, unpack=True)
                bins, rho_3, er3, rho_5, er5, rho_6, er6, rho_7, er7, rho_8, er8, rho_9, er9 = numpy.loadtxt(
                    'cos_data/cos_s%s_LF_2.el' % num, unpack=True)
                print 'Using stored RLF for the new z (The one with more z bins). If you want to calculate the plot the set "Replot=True"'
            else:
                bins, rho_3, er3, rho_5, er5, rho_6, er6 = numpy.loadtxt(
                    'cos_data/cos_s%s_LF_old.el' % num, unpack=True)
                print 'Using stored RLF for the is old z bins. If you want to calculate the plot the set "Replot=True"'
        ssd = numpy.loadtxt('%s/data_cos_s%s.txt' % (outdir, num))
        #ssd = numpy.loadtxt('cos_data/data_cos_s%s.txt'%(num))
        ssbin2 = ssd[:, 0]  #2
        ssbin1 = ssd[:, 2]  #0
        Nbin2 = ssd[:, 3]
        zbin3 = ssd[:, -1]
        dl1 = get_dl(z_min)
        dl2 = get_dl(z_max)
        #dl3 = get_dl(zbin3)

        Ncount = sum(Nbin2[fsigma > ssbin1])
        Llmin = numpy.log10(
            get_Lbins([fsigma / numpy.sqrt(Ncount)], z_min, get_dl(z_min),
                      'muJy'))[0]
        Llmin *= (1.4 / 3.)**(-.7)
        print Llmin
        dn = expt.realise(params)
        nov_real = expt.realise([2.3, 2.95, 2.86, -0.29, -0.7, 19.5, 26.0])
        #sys.exit()

        fig.add_subplot(n, m, get_changed_multiplot(n, m, num))

        plt.rc('lines', linewidth=2)

        #plt.errorbar(bins,rho_1 ,yerr=er1,fmt='*r',label='detected extracted',markersize=11) #bin
        plt.errorbar(bins[1:],
                     rho_3[1:],
                     yerr=er3[1:],
                     fmt='ob',
                     label='extracted',
                     markersize=8)  #bin
        '''
     if model in ['LFdpl','LFdpl_dpl']:
        faint =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3), Lstar_2,Lslope_2,Lslope2_2,Lnorm_2)
     elif model in ['LFpl','LFdpl_pl']:
        faint =lumfuncUtils.powerlaw(numpy.power(10,bins3), Lstar_2,Lslope_2,Lnorm_2)
     elif model in ['LFpl_dpl']:
        faint =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3),Lstar,Lslope,Lslope2,Lnorm)
     elif model in ['LFdpl_dpl_z']:
        faint =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3),Lstar,Lslope,Lslope2,Lnorm)
     else:
        faint = lumfuncUtils.lognormpl(numpy.power(10,bins3), Lstar_2,Lslope_2,Lsigma,Lnorm_2)
        
    '''
        #phi_dpl =lumfuncUtils.doublepowerlaw(numpy.power(10,bins3),Lstar ,Lslope,Lslope2,Lnorm)

        #phi_dpl
        #dpl  =
        dm = 0.4  #05
        hm = 0.

        Novak17 = lumfuncUtils.lognormpl(
            numpy.power(10, bins3) /
            (1 + z_nov[num - 1])**(3.16 - z_nov[num - 1] * 0.32),
            numpy.log10(1.85e21), 1.22, 0.63, numpy.log10(3.55e-3))
        Novak18=[lumfuncUtils.LF(S,z_m,0,0,dl,[2.3,2.86, 2.95, -0.70, -0.29,0.01,28.],\
                ['noise','A_agn','A_SF','B_agn','B_SF','LMIN','LMAX'],area=SURVEY_AREA,\
                family='LFevol_logn') for S in sbin4/1.0e6]

        phi_tot2 = [lumfuncUtils.LF(S,z_m,0,0,dl,params,expt.parameters,area=expt.survey.SURVEY_AREA,\
                                  family=modelFamily) for S in sbin5/1.0e6]

        L_1 = numpy.power(10, bins3) / (1 + z_m)**(2.86 - z_m * 0.7)
        L_2 = numpy.power(10, bins3) / (1 + z_m)**(2.95 - z_m * 0.29)
        L_4 = numpy.power(10, bins3) / (1 + z_m)**(alpha_SF + z_m * beta_SF)
        #L_3 = numpy.power(10,bins3)/(1 + z_m)**(alpha_agn+z_m*beta_agn)
        print z_m
        #print L_4
        #print L_3
        #sys.exit()
        phi_agn_n = lumfuncUtils.doublepowerlaw(L_1, 24.59, 1.27, 0.49,
                                                numpy.log10(10**(-5.5)))
        phi_sf_n = lumfuncUtils.lognormpl(L_2, numpy.log10(1.85e21), 1.22,
                                          0.63, numpy.log10(3.55e-3))
        phi_exp =[lumfuncUtils.LF(S,z_m,0,0,dl,[2.3,3, 5.58, -0.9, -1.99,0.01,28.],\
                ['noise','A_agn','A_SF','B_agn','B_SF','LMIN','LMAX'],area=SURVEY_AREA,\
                family='LFevol_logn') for S in sbin4/1.0e6]
        #Novak18= phi_agn_n+phi_sf_n
        #print 'this is Lminz', numpy.log10(10**18/(1 + z_m)**(alpha_SF+z_m*beta_SF))
        #phi_agn=lumfuncUtils.doublepowerlaw(L_3,24.59,1.27,0.49,numpy.log10(2.5*10**(-5.5)))
        phi_agn = 0
        phi_sf = lumfuncUtils.doublepowerlaw(L_4, 22.41, 2.4, 0.43,
                                             -3.50)  #0.33 2.97
        phi_sf = lumfuncUtils.lognormpl(L_4, numpy.log10(1.85e21), 1.22, 0.63,
                                        numpy.log10(3.55e-3))
        phi_tot = phi_agn + phi_sf
        #for k in range(len(phi_sf)):
        #   print bins3[k],numpy.power(10,bins3[k]), numpy.log10(L_4[k]), numpy.log10(L_3[k]), numpy.log10(phi_sf[k]), numpy.log10(phi_agn[k]),numpy.log10(phi_tot[k])
        #sys.ek
        #phi_sf =lumfuncUtils.lognormpl(L_4,numpy.log10(1.85e21),1.22,0.63, numpy.log10(3.55e-3))

        #plt.plot(bins3+hm,numpy.log10(faint)-dm,'--b' ,label='faint-end')
        #plt.plot(numpy.log10(10**bins3 *(1.4/3)**(-.7))+hm,numpy.log10(faint)-dm,'--b' ,label='faint-end')
        #plt.plot(numpy.log10(10**bins3),numpy.log10(phi_sf)-dm,'--c', label=' SF')
        #plt.plot(bins3,numpy.log10(phi_agn)-dm,'--r', label='AGN')
        #plt.plot(numpy.log10(10**bins3),numpy.log10(phi_tot)-dm,'--g',linewidth=3, label='Tot')
        #plt.plot(numpy.log10(10**bins3[:-1]),numpy.log10(phi_tot2)-dm,'-k',linewidth=4, label='Tot2')
        #plt.plot(numpy.log10(10**bins3 *(1.4/3)**(-.7)),numpy.log10(phi_exp)-dm,'-k',linewidth=4, label='Expected')
        plt.errorbar(lin_xrecon + hm,
                     lin_yrecon - 0.4,
                     fmt='-b',
                     label='MAP',
                     linewidth=3)
        #plt.plot(numpy.log10(10**bins3[:-1] *(1.4/3)**(-.7)),numpy.log10(phi_tot3[num-1])-dm,'-r',linewidth=3, label='Tot3')
        plt.errorbar(lin_xrecon + hm,
                     numpy.log10(yrecon_avr) - dm,
                     fmt='-c',
                     label='Average')
        plt.errorbar(numpy.array(L_n2[num - 1]),
                     numpy.array(rho_n2[num - 1]) - 0.4,
                     xerr=[L_ner_d2[num - 1], L_ner_u2[num - 1]],
                     yerr=[rho_ner_d2[num - 1], rho_ner_u2[num - 1]],
                     fmt='sk',
                     label='Total RLF Novak et al 2018')
        #plt.errorbar(bins3, numpy.log10(Novak17)-0.4,fmt='--b',label='Local SF Novak et al 2017')
        #plt.plot(bins3,numpy.log10(phi_agn_n),'--g', label='Local AGN Smolcic et al. 2017')
        plt.errorbar(numpy.log10(10**bins3),
                     numpy.log10(Novak18) - 0.4,
                     fmt='--k',
                     label='Total RLF Novak et al 2018')
        #plt.plot(L_s, numpy.log10(rho_1), '*m',label='bins LF',markersize=8)
        #plt.errorbar(bins,rho_5 ,yerr=er5,fmt='*r',label='Total',markersize=10) #bin
        #plt.errorbar(bins,rho_6 ,yerr=er6,fmt='>g',label='Total LF',markersize=10) #bin
        plt.fill_between(lin_xrecon + hm,
                         numpy.log10((yrecon_d)) - dm,
                         numpy.log10(yrecon_u) - dm,
                         color='k',
                         alpha=0.2)
        #plt.axvline(Lmin,color='r')
        print 'This is the dn'
        print z_m
        #print dn.keys()
        '''
     for key in dn.keys():
        if round(key,2)==round(z_m,2):z_m=key
     
     dn=dn[z_m]
     nov_real=nov_real[z_m]
     #print nov_real
     #dn=dn[round(z_m,2)]
     for i in range(len(ssbin1)):
            loglike_i= Nbin2[i]*numpy.log(dn[i]) + Nbin2[i] - (Nbin2[i] + 0.5)*numpy.log(Nbin2[i]) - 0.5*numpy.log(2*numpy.pi)  - dn[i]
            loglike_nov_i= Nbin2[i]*numpy.log(nov_real[i]) + Nbin2[i] - (Nbin2[i] + 0.5)*numpy.log(Nbin2[i]) - 0.5*numpy.log(2*numpy.pi)  - nov_real[i]
            if nov_real[i]>0:loglike_nov+=loglike_nov_i
            if dn[i]>0:loglike+=loglike_i
            print '%10.5f %8.2d %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f'%(ssbin1[i], Nbin2[i], dn[i],nov_real[i],loglike_i,loglike_nov_i,loglike, loglike_nov)
    
    
     '''
        plt.ylim(-7.6, -1.6)
        plt.axvline(fsigma, color='k', linestyle='dashed')
        plt.axvline(sigma, color='g')
        #plt.axvline(Llmin,color='r',linewidth=5)
        print 'Is this still num ', num
        if num < 2 or num < 6 and num > 3 or num > 6 and num < 9:
            plt.xticks(visible=False)
            plt.ylim(-7.6, -1.6)

        if num < 4:
            plt.xlim(19, 25.8)
            plt.text(19.2,
                     -7.,
                     '%.1f < z < %.1f' % (z_min, z_max),
                     fontsize=19)  # \n $M_i$ < -22
        elif num < 7:
            plt.xlim(20.8, 27.2)
            plt.text(21., -7., '%.1f < z < %.1f' % (z_min, z_max),
                     fontsize=19)  # \n $M_i$ < -22
        else:
            plt.xlim(21.3, 27.8)
            plt.text(21.5,
                     -7.,
                     '%.1f < z < %.1f' % (z_min, z_max),
                     fontsize=19)  # \n $M_i$ < -22

        if num == 3:
            plt.xticks([19, 20, 21, 22, 23, 24, 25], fontsize=22)
        if num == 6:
            plt.xticks([21, 22, 23, 24, 25, 26, 27], fontsize=22)
        if num == 9:
            plt.xticks([22, 23, 24, 25, 26, 27], fontsize=22)
            plt.legend(frameon=False).draggable()
        if num == 1 or num == 2 or num == 3 or num == 10:
            plt.yticks([-2., -3, -4, -5, -6], fontsize=22)
            if num == 3:
                plt.yticks([-2., -3, -4, -5, -6, -7], fontsize=22)
            continue
        plt.yticks(visible=False)

    fig.text(0.06,
             0.5,
             r'$\rm{log_{10}[\Phi /(Mpc^{-3}mag^{-1})]}$',
             fontsize=30,
             ha='center',
             va='center',
             rotation='vertical')
    fig.text(0.5,
             0.04,
             r'$\rm{log_{10}[L_{1.4}/(W}$ $\rm{Hz^{-1})]}$',
             fontsize=30,
             ha='center',
             va='center')
    #plt.text(23.9,-9.7,'%s'%outdir,fontsize = 16 ) # \n $M_i$ < -22
    plt.tick_params(axis='both', which='major', labelsize=20, width=3)
    plt.tick_params(axis='both', which='minor', labelsize=10, width=2)
    plt.subplots_adjust(hspace=0, wspace=0)
    #plt.xtick(fontsize=15)
    #plt.ytick(fontsize=15)

    #plt.ylim(-10.2,-5.8)
    #plt.ylim(-11,-5.5)
    #ax.xaxis.set_minor_locator(AutoMinorLocator())
    #ax.yaxis.set_minor_locator(AutoMinorLocator())
    #print truth['LMIN']

    plotf = '%s/LF_recon_s1.pdf' % (outdir)
    plt.show()

    return 0