def prepare_input(self,input): N = self.para.GN coor = graph = [0]*N index = [0]*(N-1) for i in range(1,self.para.GN): index[i], coor[i] = utils.farthest_sampling_new(coor[i-1], batch_size=self.batchsize, M=self.para.vertexNum[i], k=self.para.poolNum[i],r=self.para.poolRange[i], nodes_n=self.para.vertexNum[i+1]) graph[i] = utils.middle_graph_generation(coor[i], batch_size=self.batchsize, M=self.para.vertexNum[i],K=self.para.edgeNum[i])
def evaluateOneEpoch(inputCoor, inputGraph, inputLabel, para, sess, trainOperaion): # Description: Performance on the test set data # Input: (1)inputCoor: input coordinates (B, N, 3) (2) inputGraph: input graph (B, N*N) (3) inputLabel: labels (B, 1) # (4) para: global Parameters (5) sess: Session (6) trainOperaion: placeholder dictionary # Return: average loss, acc, regularization loss for test set test_loss = [] test_acc = [] test_predict = [] for i in range(len(inputCoor)): xTest, graphTest, labelTest = inputCoor[i], inputGraph[i], inputLabel[i] graphTest = graphTest.tocsr() labelBinarize = label_binarize(labelTest, classes=[j for j in range(40)]) test_batch_size = para.testBatchSize for testBatchID in range(len(labelTest) / test_batch_size): start = testBatchID * test_batch_size end = start + test_batch_size batchCoor, batchGraph, batchLabel = get_mini_batch(xTest, graphTest, labelBinarize, start, end) batchWeight = uniform_weight(batchLabel) batchGraph = batchGraph.todense() batchIndexL1, centroid_coordinates = farthest_sampling_new(batchCoor, M=para.clusterNumberL1, k=para.nearestNeighborL1, batch_size=test_batch_size, nodes_n=para.pointNumber) batchMiddleGraph = middle_graph_generation(centroid_coordinates, batch_size = test_batch_size, M = para.clusterNumberL1) feed_dict = {trainOperaion['inputPC']: batchCoor, trainOperaion['inputGraph']: batchGraph, trainOperaion['outputLabel']: batchLabel, trainOperaion['weights']: batchWeight, trainOperaion['keep_prob_1']: 1.0, trainOperaion['keep_prob_2']: 1.0, trainOperaion['batch_index_l1']: batchIndexL1, trainOperaion['l2Graph']: batchMiddleGraph, trainOperaion['batch_size']: test_batch_size } predict, loss_test, acc_test = sess.run( [trainOperaion['predictLabels'], trainOperaion['loss'], trainOperaion['acc']], feed_dict=feed_dict) test_loss.append(loss_test) test_acc.append(acc_test) test_predict.append(predict) test_average_loss = np.mean(test_loss) test_average_acc = np.mean(test_acc) return test_average_loss, test_average_acc, test_predict
def evaluateOneEpoch(inputCoor, inputGraph, inputLabel, para, sess, trainOperaion): # Description: Performance on the test set data # Input: (1)inputCoor: input coordinates (B, N, 3) (2) inputGraph: input graph (B, N*N) (3) inputLabel: labels (B, 1) # (4) para: global Parameters (5) sess: Session (6) trainOperaion: placeholder dictionary # Return: average loss, acc, regularization loss for test set test_loss = [] test_acc = [] test_predict = [] for i in range(len(inputCoor)): xTest, graphTest, labelTest = inputCoor[i], inputGraph[i], inputLabel[i] graphTest = graphTest.tocsr() labelBinarize = label_binarize(labelTest, classes=[j for j in range(40)]) test_batch_size = para.testBatchSize for testBatchID in range(len(labelTest) / test_batch_size): start = testBatchID * test_batch_size end = start + test_batch_size batchCoor, batchGraph, batchLabel = get_mini_batch(xTest, graphTest, labelBinarize, start, end) batchWeight = uniform_weight(batchLabel) batchGraph = batchGraph.todense() # select the centroid points by farthest sampling and get the index of each centroid points n nearest neighbors batchIndexL1, centroid_coordinates = farthest_sampling(batchCoor, M=para.clusterNumberL1, k=para.nearestNeighborL1, batch_size=test_batch_size, nodes_n=para.pointNumber) batchMiddleGraph = middle_graph_generation(centroid_coordinates, batch_size = test_batch_size, M = para.clusterNumberL1) feed_dict = {trainOperaion['inputPC']: batchCoor, trainOperaion['inputGraph']: batchGraph, trainOperaion['outputLabel']: batchLabel, trainOperaion['weights']: batchWeight, trainOperaion['keep_prob_1']: 1.0, trainOperaion['keep_prob_2']: 1.0, trainOperaion['batch_index_l1']: batchIndexL1, trainOperaion['l2Graph']: batchMiddleGraph, trainOperaion['batch_size']: test_batch_size } predict, loss_test, acc_test = sess.run( [trainOperaion['predictLabels'], trainOperaion['loss'], trainOperaion['acc']], feed_dict=feed_dict) test_loss.append(loss_test) test_acc.append(acc_test) test_predict.append(predict) test_average_loss = np.mean(test_loss) test_average_acc = np.mean(test_acc) return test_average_loss, test_average_acc, test_predict
def trainOneEpoch(inputCoor, inputGraph, inputLabel, para, sess, trainOperaion, weight_dict, learningRate): # Description: training one epoch (two options to train the model, using weighted gradient descent or normal gradient descent) # Input: (1)inputCoor: input coordinates (B, N, 3) (2) inputGraph: input graph (B, N*N) (3) inputLabel: labels (B, 1) # (4) para: global Parameters (5) sess: Session (6) trainOperaion: placeholder dictionary # (7) weight_dict: weighting scheme used of weighted gradient descnet (8)learningRate: learning rate for current epoch # Return: average loss, acc, regularization loss for training set dataChunkLoss = [] dataChunkAcc = [] dataChunkRegLoss = [] for i in range(len(inputLabel)): xTrain_1, graphTrain_1, labelTrain_1 = inputCoor[i], inputGraph[ i], inputLabel[i] graphTrain_1 = graphTrain_1.tocsr() labelBinarize = label_binarize(labelTrain_1, classes=[j for j in range(40)]) xTrain, graphTrain, labelTrain = shuffle(xTrain_1, graphTrain_1, labelBinarize) batch_loss = [] batch_acc = [] batch_reg = [] batchSize = para.batchSize for batchID in range(len(labelBinarize) / para.batchSize): start = batchID * batchSize end = start + batchSize batchCoor, batchGraph, batchLabel = get_mini_batch( xTrain, graphTrain, labelTrain, start, end) batchGraph = batchGraph.todense() batchCoor = add_noise(batchCoor, sigma=0.008, clip=0.02) if para.weighting_scheme == 'uniform': batchWeight = uniform_weight(batchLabel) elif para.weighting_scheme == 'weighted': batchWeight = weights_calculation(batchLabel, weight_dict) else: print 'please enter a valid weighting scheme' batchIndexL1, centroid_coordinates = farthest_sampling_new( batchCoor, M=para.clusterNumberL1, k=para.nearestNeighborL1, batch_size=batchSize, nodes_n=para.pointNumber) batchMiddleGraph = middle_graph_generation(centroid_coordinates, batch_size=batchSize, M=para.clusterNumberL1) feed_dict = { trainOperaion['inputPC']: batchCoor, trainOperaion['inputGraph']: batchGraph, trainOperaion['outputLabel']: batchLabel, trainOperaion['lr']: learningRate, trainOperaion['weights']: batchWeight, trainOperaion['keep_prob_1']: para.keep_prob_1, trainOperaion['keep_prob_2']: para.keep_prob_2, trainOperaion['batch_index_l1']: batchIndexL1, trainOperaion['l2Graph']: batchMiddleGraph, trainOperaion['batch_size']: para.batchSize } opt, loss_train, acc_train, loss_reg_train = sess.run( [ trainOperaion['train'], trainOperaion['loss_total'], trainOperaion['acc'], trainOperaion['loss_reg'] ], feed_dict=feed_dict) batch_loss.append(loss_train) batch_acc.append(acc_train) batch_reg.append(loss_reg_train) #print "The loss, L2 loss and acc for this batch is {}, {} and {}".format(loss_train, loss_reg_train, acc_train) dataChunkLoss.append(np.mean(batch_loss)) dataChunkAcc.append(np.mean(batch_acc)) dataChunkRegLoss.append(np.mean(batch_reg)) train_average_loss = np.mean(dataChunkLoss) train_average_acc = np.mean(dataChunkAcc) loss_reg_average = np.mean(dataChunkRegLoss) return train_average_loss, train_average_acc, loss_reg_average
def trainOneEpoch(inputCoor, inputGraph, inputLabel, para, sess, trainOperaion, weight_dict, learningRate): # Description: training one epoch (two options to train the model, using weighted gradient descent or normal gradient descent) # Input: (1)inputCoor: input coordinates (B, N, 3) (2) inputGraph: input graph (B, N*N) (3) inputLabel: labels (B, 1) # (4) para: global Parameters (5) sess: Session (6) trainOperaion: placeholder dictionary # (7) weight_dict: weighting scheme used of weighted gradient descnet (8)learningRate: learning rate for current epoch # Return: average loss, acc, regularization loss for training set dataChunkLoss = [] dataChunkAcc = [] dataChunkRegLoss = [] for i in range(len(inputLabel)): xTrain_1, graphTrain_1, labelTrain_1 = inputCoor[i], inputGraph[i], inputLabel[i] graphTrain_1 = graphTrain_1.tocsr() labelBinarize = label_binarize(labelTrain_1, classes=[j for j in range(40)]) xTrain, graphTrain, labelTrain = shuffle(xTrain_1, graphTrain_1, labelBinarize) batch_loss = [] batch_acc = [] batch_reg = [] batchSize = para.batchSize for batchID in range(len(labelBinarize) / para.batchSize): start = batchID * batchSize end = start + batchSize batchCoor, batchGraph, batchLabel = get_mini_batch(xTrain, graphTrain, labelTrain, start, end) batchGraph = batchGraph.todense() batchCoor = add_noise(batchCoor, sigma=0.008, clip=0.02) if para.weighting_scheme == 'uniform': batchWeight = uniform_weight(batchLabel) elif para.weighting_scheme == 'weighted': batchWeight = weights_calculation(batchLabel, weight_dict) else: print 'please enter a valid weighting scheme' batchIndexL1, centroid_coordinates = farthest_sampling_new(batchCoor, M=para.clusterNumberL1, k=para.nearestNeighborL1, batch_size=batchSize, nodes_n=para.pointNumber) batchMiddleGraph = middle_graph_generation(centroid_coordinates, batch_size = batchSize, M = para.clusterNumberL1) feed_dict = {trainOperaion['inputPC']: batchCoor, trainOperaion['inputGraph']: batchGraph, trainOperaion['outputLabel']: batchLabel, trainOperaion['lr']: learningRate, trainOperaion['weights']: batchWeight, trainOperaion['keep_prob_1']: para.keep_prob_1, trainOperaion['keep_prob_2']: para.keep_prob_2, trainOperaion['batch_index_l1']: batchIndexL1, trainOperaion['l2Graph']: batchMiddleGraph, trainOperaion['batch_size']: para.batchSize} opt, loss_train, acc_train, loss_reg_train = sess.run( [trainOperaion['train'], trainOperaion['loss_total'], trainOperaion['acc'], trainOperaion['loss_reg']], feed_dict=feed_dict) batch_loss.append(loss_train) batch_acc.append(acc_train) batch_reg.append(loss_reg_train) #print "The loss, L2 loss and acc for this batch is {}, {} and {}".format(loss_train, loss_reg_train, acc_train) dataChunkLoss.append(np.mean(batch_loss)) dataChunkAcc.append(np.mean(batch_acc)) dataChunkRegLoss.append(np.mean(batch_reg)) train_average_loss = np.mean(dataChunkLoss) train_average_acc = np.mean(dataChunkAcc) loss_reg_average = np.mean(dataChunkRegLoss) return train_average_loss, train_average_acc, loss_reg_average
def predictOneData(self, data): Coor_1, graph, label = data[0], data[1], data[2] batchSize = self.para.testBatchSize Graph_1 = graph.todense() SCoor_1 = utils.get_Spherical_coordinate(Coor_1) # layer_1: (2)down sampling and pooling IndexL1, Coor_2 = utils.farthest_sampling_new( Coor_1, M=self.para.vertexNumG2, k=self.para.poolNumG1, r=self.para.poolRangeG1, batch_size=batchSize, nodes_n=self.para.vertexNumG1) # layer_2: (1)graph generate (2)down sampling and pooling Graph_2 = utils.middle_graph_generation(Coor_2, batch_size=batchSize, M=self.para.vertexNumG2, K=self.para.edgeNumG2) IndexL2, Coor_3 = utils.farthest_sampling_new( Coor_2, M=self.para.vertexNumG3, k=self.para.poolNumG2, r=self.para.poolRangeG2, batch_size=batchSize, nodes_n=self.para.vertexNumG2) # layer_3: (1)graph generate (2)down sampling and pooling Graph_3 = utils.middle_graph_generation(Coor_3, batch_size=batchSize, M=self.para.vertexNumG3, K=self.para.edgeNumG3) IndexL3, Coor_4 = utils.farthest_sampling_new( Coor_3, M=self.para.vertexNumG4, k=self.para.poolNumG3, r=self.para.poolRangeG3, batch_size=batchSize, nodes_n=self.para.vertexNumG3) feed_dict = { self.placeholder['isTraining']: False, self.placeholder['batch_size']: batchSize, self.placeholder['coordinate']: SCoor_1 if self.para.useSphericalPos else Coor_1, self.placeholder['graph_1']: Graph_1, # for 1st gcn layer graph self.placeholder['poolIndex_1']: IndexL1, # for 1st pooling layer self.placeholder['graph_2']: Graph_2, # for 2st gcn layer graph self.placeholder['poolIndex_2']: IndexL2, # for 2st pooling layer self.placeholder['graph_3']: Graph_3, # for 3st gcn layer graph self.placeholder['poolIndex_3']: IndexL3, # for 3st pooling layer } probability = self.sess.run([self.model.probability], feed_dict=feed_dict) return probability
def trainOneEpoch(self, writer, train_dataset, weight_dict): batchSize = self.para.trainBatchSize train_iter = train_dataset.iter(batchSize) batch_count = 0 while True: try: SCoor_1, Coor_1, Graph_1, batchLabel = next(train_iter) except StopIteration: break # 为非均匀数据集加入每种对象类型占比 if self.para.weighting_scheme == 'uniform': batchWeight = utils.uniform_weight(batchLabel) elif self.para.weighting_scheme == 'weighted': batchWeight = utils.weights_calculation( batchLabel, weight_dict) else: print('please enter a valid weighting scheme') batchWeight = utils.uniform_weight(batchLabel) # layer_1: (2)down sampling and pooling IndexL1, Coor_2 = utils.farthest_sampling_new( Coor_1, M=self.para.vertexNumG2, k=self.para.poolNumG1, r=self.para.poolRangeG1, batch_size=batchSize, nodes_n=self.para.vertexNumG1) # layer_2: (1)graph generate (2)down sampling and pooling Graph_2 = utils.middle_graph_generation(Coor_2, batch_size=batchSize, M=self.para.vertexNumG2, K=self.para.edgeNumG2) IndexL2, Coor_3 = utils.farthest_sampling_new( Coor_2, M=self.para.vertexNumG3, k=self.para.poolNumG2, r=self.para.poolRangeG2, batch_size=batchSize, nodes_n=self.para.vertexNumG2) # layer_3: (1)graph generate (2)down sampling and pooling Graph_3 = utils.middle_graph_generation(Coor_3, batch_size=batchSize, M=self.para.vertexNumG3, K=self.para.edgeNumG3) IndexL3, Coor_4 = utils.farthest_sampling_new( Coor_3, M=self.para.vertexNumG4, k=self.para.poolNumG3, r=self.para.poolRangeG3, batch_size=batchSize, nodes_n=self.para.vertexNumG3) feed_dict = { self.placeholder['isTraining']: True, self.placeholder['batch_size']: batchSize, self.placeholder['coordinate']: SCoor_1 if self.para.useSphericalPos else Coor_1, self.placeholder['label']: batchLabel, self.placeholder['weights']: batchWeight, self.placeholder['graph_1']: Graph_1, #for 1st gcn layer graph self.placeholder['poolIndex_1']: IndexL1, #for 1st pooling layer self.placeholder['graph_2']: Graph_2, #for 2st gcn layer graph self.placeholder['poolIndex_2']: IndexL2, #for 2st pooling layer self.placeholder['graph_3']: Graph_3, #for 3st gcn layer graph self.placeholder['poolIndex_3']: IndexL3, #for 3st pooling layer } opt, summary = self.sess.run( [self.model.opt_op, self.model.summary], feed_dict=feed_dict) writer.add_summary(summary, self.train_batch_count) print("train epoch:{},batch:{}".format(self.epoch_count, batch_count)) self.train_batch_count += 1 batch_count += 1 self.epoch_count += 1
def evaluateOneEpoch(self, eval_dataset, weight_dict): batchSize = self.para.evalBatchSize eval_iter = eval_dataset.iter(batchSize) batch_count = 0 probability_list = [] label_one_hot_list = [] batchWeight_list = [] while True: try: SCoor_1, Coor_1, Graph_1, batchLabel = next(eval_iter) except StopIteration: break # 为非均匀数据集加入每种对象类型占比 if self.para.weighting_scheme == 'uniform': batchWeight = utils.uniform_weight(batchLabel) elif self.para.weighting_scheme == 'weighted': batchWeight = utils.weights_calculation( batchLabel, weight_dict) else: print('please enter a valid weighting scheme') batchWeight = utils.uniform_weight(batchLabel) # layer_1: (2)down sampling and pooling IndexL1, Coor_2 = utils.farthest_sampling_new( Coor_1, M=self.para.vertexNumG2, k=self.para.poolNumG1, r=self.para.poolRangeG1, batch_size=batchSize, nodes_n=self.para.vertexNumG1) # layer_2: (1)graph generate (2)down sampling and pooling Graph_2 = utils.middle_graph_generation(Coor_2, batch_size=batchSize, M=self.para.vertexNumG2, K=self.para.edgeNumG2) IndexL2, Coor_3 = utils.farthest_sampling_new( Coor_2, M=self.para.vertexNumG3, k=self.para.poolNumG2, r=self.para.poolRangeG2, batch_size=batchSize, nodes_n=self.para.vertexNumG2) # layer_3: (1)graph generate (2)down sampling and pooling Graph_3 = utils.middle_graph_generation(Coor_3, batch_size=batchSize, M=self.para.vertexNumG3, K=self.para.edgeNumG3) IndexL3, Coor_4 = utils.farthest_sampling_new( Coor_3, M=self.para.vertexNumG4, k=self.para.poolNumG3, r=self.para.poolRangeG3, batch_size=batchSize, nodes_n=self.para.vertexNumG3) feed_dict = { self.placeholder['isTraining']: False, self.placeholder['batch_size']: batchSize, self.placeholder['coordinate']: SCoor_1 if self.para.useSphericalPos else Coor_1, self.placeholder['graph_1']: Graph_1, # for 1st gcn layer graph self.placeholder['poolIndex_1']: IndexL1, # for 1st pooling layer self.placeholder['graph_2']: Graph_2, # for 2st gcn layer graph self.placeholder['poolIndex_2']: IndexL2, # for 2st pooling layer self.placeholder['graph_3']: Graph_3, # for 3st gcn layer graph self.placeholder['poolIndex_3']: IndexL3, # for 3st pooling layer } probability = self.sess.run(self.model.probability, feed_dict=feed_dict) batchWeight_list.append(batchWeight) probability_list.append(probability) label_one_hot_list.append(batchLabel) print("evaluate epoch:{},batch:{}".format(self.epoch_count - 1, batch_count)) batch_count += 1 batchWeights = np.concatenate(batchWeight_list) probabilitys = np.concatenate(probability_list) predicts = np.argmax(probabilitys, axis=1) label_one_hots = np.concatenate(label_one_hot_list) labels = np.argmax(label_one_hots, axis=1) confusion_matrix = sklearn.metrics.confusion_matrix(labels, predicts) #混淆矩阵 accuracy = sklearn.metrics.accuracy_score( labels, predicts, normalize=True, sample_weight=batchWeights) #总准确率 # precision = sklearn.metrics.precision_score(labels,predicts,average ='macro') #查准率 weighted # recall = sklearn.metrics.recall_score(labels, predicts, average='macro') #查全率 f1 = sklearn.metrics.f1_score( labels, predicts, average='macro') #查准率和查全率的调和平均,1-best,0-worst precision, recall, thresholds = sklearn.metrics.precision_recall_curve( label_one_hots.ravel(), probabilitys.ravel()) fpr, tpr, thresholds = sklearn.metrics.roc_curve( label_one_hots.ravel(), probabilitys.ravel()) #ROC曲线图 auc = sklearn.metrics.auc(fpr, tpr) #AUC print("evaluate epoch:{},accuracy:{:.4f},auc:{:.4f}".format( self.epoch_count - 1, accuracy, auc)) np.savez(self.para.evalDir + 'eval_epoch_' + str(self.epoch_count - 1) + '.npz', confusion_matrix=confusion_matrix, accuracy=accuracy, precision=precision, recall=recall, f1=f1, fpr=fpr, tpr=tpr, auc=auc)