示例#1
0
def test(model, tokenizer, test_data, args):
    logger.info("Test starts!")
    model_load(args.model_dir, model)
    model = model.to(device)

    test_dataset = QueryDataset(test_data)
    test_data_loader = DataLoader(
        test_dataset,
        sampler=SequentialSampler(test_dataset),
        batch_size=args.bsz,
        num_workers=args.num_workers,
        collate_fn=lambda x: collate_fn(x, tokenizer, args.sample, args.
                                        max_seq_len))

    test_loss, test_str = evaluate(model, test_data_loader)
    logger.info(f"| test  | {test_str}")
示例#2
0
文件: main.py 项目: LiamMa/DL_AS3
def main(args):
    train_iter, valid_iter, test_iter = get_data_loader('data', args.batch_size, model=args.model)
    # ---------- Try to load model first ----------
    model = None
    if args.load_model:
        try:
            model = utils.model_load('P3_{}.pt'.format(args.model))
        except:
            logger.info('Loading model failed, will train the model first.')
            args.load_model = False
    # ---------- GAN related ----------
    if args.model == 'GAN':
        if not args.load_model or args.mode == 'train':
            if not model:
                model = GAN(N_LATENT)
            model.to(dev)
            train_gan(model, train_iter, test_iter, args.num_epochs,
                      G_update_iterval=args.G_update_interval, test_interval=args.test_interval,
                      save_model=args.save_model)
        model.eval()

        if args.mode == 'test':
            test_all(model, test_iter, args.batch_size, N_LATENT, model_name='GAN')

        if args.mode == 'gen':
            latent = torch.randn(size=(1000, N_LATENT), device=dev)
            generate_images(model.generator, latent, save_path='sample/GAN/samples')

    # ---------- VAE related ----------
    else:
        if args.mode == 'train' or not args.load_model:
            model = VAE(N_LATENT)
            model.to(dev)
            train_vae(model, train_iter, test_iter, args.num_epochs,
                      test_interval=args.test_interval, save_model=args.save_model)
        model.eval()

        if args.mode == 'test':
            test_all(model, test_iter, args.batch_size, N_LATENT, model_name='VAE')

        if args.mode == 'gen':
            # n_imgs = 0
            # latent = []
            # with torch.no_grad():
            #     for batch in test_iter:
            #         X = batch[0].to(dev)
            #         n_imgs += X.shape[0]
            #         latent.append(model.reparam(*model.encode(X)))
            #
            #         if n_imgs > 1000:
            #             break
            #     latent = torch.cat(latent, dim=0)[:1000]
            latent = torch.randn(size=(1000, N_LATENT), device=dev)
            generate_images(model.decoder, latent, save_path='sample/VAE/samples')
示例#3
0
def main(args):
    logger.info(f"Args: {json.dumps(args.__dict__, indent=2, sort_keys=True)}")

    spm_path = os.path.join('spm', args.spm, "spm.model")
    args.sample = parse_sample_options(args.sample)
    logger.info(f"Loading tokenizer from {spm_path}")
    tokenizer = Tokenizer(spm_path)
    args.ntoken = ntoken = len(tokenizer)
    logger.info(f"  Vocabulary size: {ntoken}")

    logger.info("Reading dataset")
    data = {}
    for x in ['train', 'valid', 'test']:
        data[x] = read_data(os.path.join(args.data_dir, f"{x}.query.txt"),
                            min_len=args.min_len)
        logger.info(f"  Number of {x:>5s} data: {len(data[x]):8d}")

    logger.info("Preparing model and optimizer")
    config = LMConfig(ntoken, args.ninp, args.nhid, args.nlayers,
                      args.dropouti, args.dropoutr, args.dropouth,
                      args.dropouto)
    model = LanguageModel(config).to(device)
    params = get_params(model)
    logger.info(
        f"  Number of model parameters: {sum(p.numel() for p in params)}")
    optimizer = torch.optim.Adam(params)

    if args.resume:
        logger.info(f"Loading model from {args.resume}")
        model_load(args.resume, model, optimizer)
        model = model.to(device)

    if n_gpu > 1:
        logger.info(f"Making model as data parallel")
        model = torch.nn.DataParallel(model, dim=1)

    train(model, optimizer, tokenizer, data['train'], data['valid'], args)

    test(model, tokenizer, data['test'], args)
示例#4
0
def gen_gradcam_image(model_parameter, data_dir, result_dir):
    cnn = utils.model_load(model_parameter)

    input_size = vis_utils.get_input_size(cnn.meta['base_model'])
    target_layer = vis_utils.get_conv_layer(cnn.meta['base_model'])
    preprocess = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])
    visualizer = Visualize(cnn,
                           preprocess,
                           target_layer,
                           num_classes=cnn.meta['num_classes'],
                           retainModel=False)

    result_dir = os.sep.join(["results", result_dir])
    if os.path.isdir(result_dir):
        if len(os.listdir(result_dir)) != 0:
            print("Result path exist and not empty, not generating")
            return
    else:
        os.mkdir(result_dir)

    from torchvision.datasets.folder import find_classes, make_dataset
    classes, class_to_idx = find_classes(data_dir)
    dataset = make_dataset(data_dir, class_to_idx)

    for class_name in os.listdir(data_dir):
        os.mkdir(os.sep.join([result_dir, class_name]))

    for img_path, idx in dataset:
        target_img_path = img_path.replace(data_dir + os.sep, "")
        print("Processing: ", target_img_path)

        img_pil = Image.open(img_path)
        img_pil = img_pil.resize((input_size, input_size))

        visualizer.input_image(img_pil)
        x = visualizer.get_prediction_output()
        x = F.softmax(Variable(x)).data

        for pred_c, idx in class_to_idx.items():
            gradcam = visualizer.get_gradcam_heatmap(idx)[0]
            target_img = target_img_path.replace(
                '.jpg', '_{}_{:.4f}.jpg'.format(pred_c, x[0][idx]))
            gradcam.save(os.sep.join([result_dir, target_img]))
示例#5
0
def test(args):
    fn = 'corpus.{}.data'.format(hashlib.md5(args.data.encode()).hexdigest())
    if os.path.exists(fn):
        print('Loading cached dataset...')
        corpus = torch.load(fn)
        print('Done')
    else:
        print('Producing dataset...')
        corpus = data.Corpus(args.data)
        torch.save(corpus, fn)
        print('Done')

    ntokens = len(corpus.dictionary)
    batch_size = args.batchSize
    val_data = batchify(corpus.valid, batch_size, args)
    test_data = batchify(corpus.test, batch_size, args)

    if not os.path.isfile(args.weightFile):
        print('Pre-trained weight file does not exist. Please check the location: {}'.format(args.weightFile))
        exit()
    model, criterion, _, _ = model_load(args.weightFile)
    if torch.cuda.is_available():
        model = model.cuda()
        criterion = criterion.cuda()

    # Run on validation data.
    val_loss = evaluate(args, model, criterion, val_data, ntokens, batch_size)
    print('=' * 89)
    print('| End of Validation | val loss {:5.2f} | val ppl {:8.2f}'.format(
        val_loss, math.exp(val_loss)))
    print('=' * 89)

    # Run on test data.
    test_loss = evaluate(args, model, criterion, test_data, ntokens, batch_size)
    print('=' * 89)
    print('| End of Testing | test loss {:5.2f} | test ppl {:8.2f}'.format(
        test_loss, math.exp(test_loss)))
    print('=' * 89)
示例#6
0
def main(args):
    logger.info(f"Args: {json.dumps(args.__dict__, indent=2, sort_keys=True)}")

    spm_path = os.path.join('spm', args.spm, "spm.model")
    logger.info(f"Loading tokenizer from {spm_path}")
    tokenizer = Tokenizer(spm_path)
    args.ntoken = ntoken = len(tokenizer)
    args.branching_factor = min([args.branching_factor, args.ntoken])
    logger.info(f"  Vocab size: {ntoken}")

    n_queries_str = f"{f'only {args.n_queries} samples' if args.n_queries else 'all'} quries from"
    logger.info(f"Reading a dataset ({n_queries_str} test.query.txt)")
    seen_set = set(
        read_data(os.path.join(args.data_dir, "train.query.txt"),
                  min_len=args.min_len))
    test_data = read_data(os.path.join(args.data_dir, "test.query.txt"),
                          min_len=args.min_len)
    if args.n_queries:
        random.seed(args.seed)
        test_data = random.sample(test_data, args.n_queries)
    n_seen_test_data = len([x for x in test_data if x in seen_set])
    n_unseen_test_data = len(test_data) - n_seen_test_data
    logger.info(
        f"  Number of test data: {len(test_data):8d} (seen {n_seen_test_data}, unseen {n_unseen_test_data})"
    )

    logger.info(f"Loading model from {args.model_dir}")
    model = model_load(args.model_dir)
    model = model.to(device)

    logger.info('Generation starts!')
    with torch.no_grad():
        generate(model,
                 tokenizer,
                 test_data,
                 args,
                 seen_set=seen_set,
                 calc_mrl=args.calc_mrl)
示例#7
0
def gen_gradcam_numpy(model_parameter, data_dir):
    cnn = utils.model_load(model_parameter)

    input_size = vis_utils.get_input_size(cnn.meta['base_model'])
    target_layer = vis_utils.get_conv_layer(cnn.meta['base_model'])
    preprocess = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ])
    visualizer = Visualize(cnn,
                           preprocess,
                           target_layer,
                           num_classes=cnn.meta['num_classes'],
                           retainModel=False)

    result = np.empty(0)

    from torchvision.datasets.folder import find_classes, make_dataset
    classes, class_to_idx = find_classes(data_dir)
    dataset = make_dataset(data_dir, class_to_idx)

    for img_path, idx in dataset:
        print("Processing: ", img_path.replace(data_dir + os.sep, ""))

        img_pil = Image.open(img_path)
        img_pil = img_pil.resize((input_size, input_size))

        visualizer.input_image(img_pil)

        gradcam = visualizer.get_gradcam_intensity(idx)
        gradcam = vis_utils.normalize(gradcam)
        result = np.append(result, gradcam)
        print(result.shape)

    np.save(os.sep.join(['results', model_parameter, 'gradcam.npy']), result)
示例#8
0
文件: main.py 项目: sacmehta/PRU
def trainEvalLM(args):
    fn = 'corpus.{}.data'.format(hashlib.md5(args.data.encode()).hexdigest())
    if os.path.exists(fn):
        print('Loading cached dataset...')
        corpus = torch.load(fn)
    else:
        print('Producing dataset...')
        corpus = data.Corpus(args.data)
        torch.save(corpus, fn)

    if torch.cuda.is_available():
        args.cuda = True

    ntokens = len(corpus.dictionary)
    eval_batch_size = 10
    train_data = batchify(corpus.train, args.batch_size, args)
    val_data = batchify(corpus.valid, eval_batch_size, args)

    # Build the model and loss function
    model = lmModel.RNNModel(args.model,
                             ntokens,
                             args.emsize,
                             args.nhid,
                             args.nlayers,
                             args.dropout,
                             args.tied,
                             g=args.g,
                             k=args.k)
    criterion = nn.CrossEntropyLoss()
    if torch.cuda.is_available():
        model = model.cuda()
        criterion = criterion.cuda()

    #compute network parameters
    params = list(model.parameters())
    total_params = np.sum([np.prod(p.size()) for p in params])
    print(
        '\033[1;32;40mTotal parameters (in million):\033[0m\033[1;31;40m {:0.2f} \033[0m\n'
        .format(total_params / 1e6, 2))

    optimizer = torch.optim.SGD(params, lr=args.lr, weight_decay=args.wdecay)
    start_epoch = 1
    if args.resume:
        print('Resuming model ...')
        model, criterion, optimizer, start_epoch = model_load(args.resume)
        optimizer.param_groups[0]['lr'] = args.lr
        model.dropout = args.dropout

    # At any point you can hit Ctrl + C to break out of training early.
    try:
        #Create folder for saving model and log files
        args.saveDir += '_' + args.model
        # =====================
        if not os.path.isdir(args.saveDir):
            os.mkdir(args.saveDir)

        save_str = 'nl_' + str(args.nlayers) + '_nh_' + str(
            args.nhid) + '_g_' + str(args.g) + '_k_' + str(args.k)
        args.save = args.saveDir + '/model_' + save_str + '.pt'

        logFileLoc = args.saveDir + '/logs_' + save_str + '.txt'
        logger = open(logFileLoc, 'w')
        logger.write(str(args))
        logger.write('\n Total parameters (in million): {:0.2f}'.format(
            total_params / 1e6, 2))
        logger.write('\n\n')
        logger.write(
            "\n%s\t%s\t%s\t%s\t%s" %
            ('Epoch', 'Loss(Tr)', 'Loss(val)', 'ppl (tr)', 'ppl (val)'))
        logger.flush()

        best_val_loss = []
        stored_loss = 100000000
        # Loop over epochs.
        for epoch in range(start_epoch, args.epochs + 1):
            epoch_start_time = time.time()
            train_loss = train(args, model, criterion, optimizer, epoch,
                               train_data, ntokens)

            ### TRAIN WITH ASGD
            if 't0' in optimizer.param_groups[0]:
                tmp = {}
                for prm in model.parameters():
                    tmp[prm] = prm.data.clone()
                    prm.data = optimizer.state[prm]['ax'].clone()

                val_loss = evaluate(args, model, criterion, val_data, ntokens,
                                    eval_batch_size)

                print('-' * 89)
                print(
                    '| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
                    'valid ppl {:8.2f}'.format(
                        epoch, (time.time() - epoch_start_time), val_loss,
                        math.exp(val_loss)))
                print('-' * 89)

                logger.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f" %
                             (epoch, train_loss, val_loss,
                              math.exp(train_loss), math.exp(val_loss)))
                logger.flush()

                if val_loss < stored_loss:
                    model_save(args.save, model, criterion, optimizer, epoch)
                    print('Saving Averaged (new best validation)')
                    stored_loss = val_loss

                for prm in model.parameters():
                    prm.data = tmp[prm].clone()

            else:
                val_loss = evaluate(args, model, criterion, val_data, ntokens,
                                    eval_batch_size)

                print('-' * 89)
                print(
                    '| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
                    'valid ppl {:8.2f}'.format(
                        epoch, (time.time() - epoch_start_time), val_loss,
                        math.exp(val_loss)))
                print('-' * 89)

                logger.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f" %
                             (epoch, train_loss, val_loss,
                              math.exp(train_loss), math.exp(val_loss)))
                logger.flush()

                if val_loss < stored_loss:
                    model_save(args.save, model, criterion, optimizer, epoch)
                    print('Saving model (new best validation)')
                    stored_loss = val_loss

                if 't0' not in optimizer.param_groups[0] and (
                        len(best_val_loss) > args.nonmono
                        and val_loss > min(best_val_loss[:-args.nonmono])):
                    print('Switching to ASGD')
                    optimizer = torch.optim.ASGD(model.parameters(),
                                                 lr=args.lr,
                                                 t0=0,
                                                 lambd=0.,
                                                 weight_decay=args.wdecay)
                best_val_loss.append(val_loss)
    except KeyboardInterrupt:
        print('-' * 89)
        print('Exiting from training early')
示例#9
0
文件: main.py 项目: nuradilK/mos
                stored_loss = val_loss

            if 't0' not in optimizer.param_groups[0] and (
                    len(best_val_loss) > args.nonmono
                    and val_loss > min(best_val_loss[:-args.nonmono])):
                logging('Switching!')
                optimizer = torch.optim.ASGD(model.parameters(),
                                             lr=args.lr,
                                             t0=0,
                                             lambd=0.,
                                             weight_decay=args.wdecay)
                optimizer.param_groups[0]['lr'] /= 2.
            best_val_loss.append(val_loss)

        torch.cuda.empty_cache()

except KeyboardInterrupt:
    logging('-' * 89)
    logging('Exiting from training early')

# Load the best saved model.
model = model_load(os.path.join(args.save, 'model.pt'))
parallel_model = nn.DataParallel(model, dim=1).cuda()

# Run on test data.
test_loss = evaluate(test_data, test_batch_size)
logging('=' * 89)
logging('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format(
    test_loss, math.exp(test_loss)))
logging('=' * 89)
示例#10
0
def main(argv=None):
    """
    CIFAR10 CleverHans tutorial
    :return:
    """
    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # CIFAR10-specific dimensions
    img_rows = 32
    img_cols = 32
    channels = 3
    nb_classes = 10

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    sess = tf.Session()

    set_log_level(logging.DEBUG)

    # Get CIFAR10 test data
    X_train, Y_train, X_test, Y_test = data_cifar10()

    # Label smoothing
    assert Y_train.shape[1] == 10.

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, channels))

    y = tf.placeholder(tf.float32, shape=(None, 10))

    model_path = FLAGS.model_path
    nb_samples = FLAGS.nb_samples

    from cnn_models import make_basic_cnn
    model = make_basic_cnn('fp_',
                           input_shape=(None, img_rows, img_cols, channels),
                           nb_filters=FLAGS.nb_filters)

    preds = model(x)
    print("Defined TensorFlow model graph with %d parameters" % model.n_params)

    rng = np.random.RandomState([2017, 8, 30])

    def evaluate(eval_params):
        # Evaluate the model on legitimate test examples
        acc = model_eval(sess, x, y, preds, X_test, Y_test, args=eval_params)
        return acc

    model_load(sess, model_path)
    print('Restored model from %s' % model_path)
    eval_params = {'batch_size': FLAGS.batch_size}
    accuracy = evaluate(eval_params)
    print('Test accuracy on legitimate test examples: {0}'.format(accuracy))

    ###########################################################################
    # Craft adversarial examples using the Jacobian-based saliency map approach
    ###########################################################################
    print('Crafting ' + str(nb_samples) + ' * ' + str(nb_classes - 1) +
          ' adversarial examples')

    # Keep track of success (adversarial example classified in target)
    results = np.zeros((nb_classes, nb_samples), dtype='i')

    # Rate of perturbed features for each test set example and target class
    perturbations = np.zeros((nb_classes, nb_samples), dtype='f')

    # Initialize our array for grid visualization
    grid_shape = (nb_classes, nb_classes, img_rows, img_cols, channels)
    grid_viz_data = np.zeros(grid_shape, dtype='f')

    from cleverhans.attacks import SaliencyMapMethod
    jsma = SaliencyMapMethod(model, sess=sess)
    jsma_params = {
        'gamma': FLAGS.gamma,
        'theta': 1.,
        'symbolic_impl': True,
        'clip_min': 0.,
        'clip_max': 1.,
        'y_target': None
    }
    figure = None
    # Loop over the samples we want to perturb into adversarial examples
    for sample_ind in range(0, nb_samples):
        print('--------------------------------------')
        print('Attacking input %i/%i' % (sample_ind + 1, nb_samples))
        sample = X_test[sample_ind:(sample_ind + 1)]

        # We want to find an adversarial example for each possible target class
        # (i.e. all classes that differ from the label given in the dataset)
        current_class = int(np.argmax(Y_test[sample_ind]))
        target_classes = other_classes(nb_classes, current_class)

        # For the grid visualization, keep original images along the diagonal
        grid_viz_data[current_class, current_class, :, :, :] = np.reshape(
            sample, (img_rows, img_cols, channels))

        # Loop over all target classes
        for target in target_classes:
            print('Generating adv. example for target class %i' % target)

            # This call runs the Jacobian-based saliency map approach
            one_hot_target = np.zeros((1, nb_classes), dtype=np.float32)
            one_hot_target[0, target] = 1
            jsma_params['y_target'] = one_hot_target
            adv_x = jsma.generate_np(sample, **jsma_params)

            # Check if success was achieved
            res = int(model_argmax(sess, x, preds, adv_x) == target)

            # Computer number of modified features
            adv_x_reshape = adv_x.reshape(-1)
            test_in_reshape = X_test[sample_ind].reshape(-1)
            nb_changed = np.where(adv_x_reshape != test_in_reshape)[0].shape[0]
            percent_perturb = float(nb_changed) / adv_x.reshape(-1).shape[0]

            # Display the original and adversarial images side-by-side
            if FLAGS.viz_enabled:
                figure = pair_visual(
                    np.reshape(sample, (img_rows, img_cols, channels)),
                    np.reshape(adv_x, (img_rows, img_cols, channels)), figure)

            # Add our adversarial example to our grid data
            grid_viz_data[target, current_class, :, :, :] = np.reshape(
                adv_x, (img_rows, img_cols, channels))

            # Update the arrays for later analysis
            results[target, sample_ind] = res
            perturbations[target, sample_ind] = percent_perturb

    print('--------------------------------------')

    # Compute the number of adversarial examples that were successfully found
    nb_targets_tried = ((nb_classes - 1) * nb_samples)
    succ_rate = float(np.sum(results)) / nb_targets_tried
    print('Avg. rate of successful adv. examples {0:.4f}'.format(succ_rate))
    report.clean_train_adv_eval = 1. - succ_rate

    # Compute the average distortion introduced by the algorithm
    percent_perturbed = np.mean(perturbations)
    print('Avg. rate of perturbed features {0:.4f}'.format(percent_perturbed))

    # Compute the average distortion introduced for successful samples only
    percent_perturb_succ = np.mean(perturbations * (results == 1))
    print('Avg. rate of perturbed features for successful '
          'adversarial examples {0:.4f}'.format(percent_perturb_succ))

    # Close TF session
    sess.close()

    # Finally, block & display a grid of all the adversarial examples
    if FLAGS.viz_enabled:
        import matplotlib.pyplot as plt
        plt.close(figure)
        _ = grid_visual(grid_viz_data)
import models, utils

import os, argparse

# Visualizing some training result with saliency map and gradcam

# Command line argument
parser = argparse.ArgumentParser(description='Visualize prediction')
parser.add_argument('model', help='directory of the trained model saves')
parser.add_argument('image', help='image for generating the visualization')
args = parser.parse_args()

# parameter
model_parameter = args.model

cnn = utils.model_load(model_parameter)

input_size = vis_utils.get_input_size(cnn.meta['base_model'])
target_layer = vis_utils.get_conv_layer(cnn.meta['base_model'])
preprocess = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
visualizer = Visualize(cnn,
                       preprocess,
                       target_layer,
                       num_classes=cnn.meta['num_classes'],
                       retainModel=False)

img_pil = Image.open(args.image)
img_pil = img_pil.resize((input_size, input_size))
示例#12
0
import os
import numpy as np
import pickle

from flask import Flask, flash, request, redirect, url_for, render_template, send_from_directory
from werkzeug.utils import secure_filename
from config import Config
from utils import model_load, get_class, from_pdf_to_vector, find_similar
import matplotlib.pyplot as plt

ALLOWED_EXTENSIONS = {'pdf'}

tfidf, logr = model_load('data/tfidf.p', 'data/logr.p')

with open('data/vectorized_articles.p', 'rb') as file:
    database = pickle.load(file)

app = Flask(__name__)
app.config.from_object(Config)


def allowed_file(filename):
    return '.' in filename and \
           filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS


@app.route('/', methods=['GET', 'POST'])
def upload_file():
    if request.method == 'POST':
        # check if the post request has the file part
        if 'file' not in request.files:
示例#13
0
def main(argv=None):
    """
    CIFAR10 CleverHans tutorial
    :return:
    """
    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # CIFAR10-specific dimensions
    img_rows = 32
    img_cols = 32
    channels = 3
    nb_classes = 10

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    sess = tf.Session()

    set_log_level(logging.DEBUG)

    # Get CIFAR10 test data
    X_train, Y_train, X_test, Y_test = data_cifar10()

    # Label smoothing
    assert Y_train.shape[1] == 10.

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, channels))

    y = tf.placeholder(tf.float32, shape=(None, 10))

    model_path = FLAGS.model_path

    from cnn_models import make_basic_cnn
    model = make_basic_cnn('fp_',
                           input_shape=(None, img_rows, img_cols, channels),
                           nb_filters=FLAGS.nb_filters)

    preds = model(x)
    print("Defined TensorFlow model graph with %d parameters" % model.n_params)

    rng = np.random.RandomState([2017, 8, 30])

    def evaluate(eval_params):
        # Evaluate the model on legitimate test examples
        acc = model_eval(sess, x, y, preds, X_test, Y_test, args=eval_params)
        return acc

    model_load(sess, model_path)
    print('Restored model from %s' % model_path)
    eval_params = {'batch_size': FLAGS.batch_size}
    accuracy = evaluate(eval_params)
    print('Test accuracy on legitimate test examples: {0}'.format(accuracy))

    class_names = [
        'airplane', 'auto', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',
        'ship', 'truck'
    ]

    np.random.seed(0)
    labels = np.zeros((1, nb_classes))
    conf_ar = np.zeros(nb_classes)
    path = './cifar10_cleverhans_gen'

    attack_params = {
        'eps': 1,
        'eps_iter': FLAGS.eps_iter,
        'nb_iter': FLAGS.nb_iter,
        'clip_min': 0.,
        'clip_max': 1.
    }
    from cleverhans.attacks import BasicIterativeMethod
    attacker = BasicIterativeMethod(model, back='tf', sess=sess)

    # build a rectangle in axes coords
    left, width = .25, .5
    bottom, height = .25, .5
    right = left + width
    top = bottom + height
    fig, axes = plt.subplots(1, 10, squeeze=True, figsize=(8, 1.25))

    # generate unrecognizable adversarial examples
    for i in range(nb_classes):

        print("Generating %s" % class_names[i])
        '''
        Draw some noise from a uniform or Gaussian distribution.
        these settings are fairly arbitrary, feel free to tune the knobs

        You may also want to try:
        adv_img = np.clip(np.random.normal(
                        loc=0.5, scale=0.25, size=(1, img_rows, img_cols, channels)), 0, 1)
        '''
        adv_img = 0.5 + \
            np.random.rand(1, img_rows, img_cols, channels) / 10

        labels[0, :] = 0
        labels[0, i] = 1

        attack_params.update({'y_target': labels})
        adv_img = attacker.generate_np(adv_img, **attack_params)
        axes[i].imshow(adv_img.reshape(img_rows, img_cols, channels))
        axes[i].get_xaxis().set_visible(False)
        axes[i].get_yaxis().set_visible(False)
        if FLAGS.annot:
            ax = axes[i]
            ax.text(0.5 * (left + right),
                    1.0,
                    class_names[i],
                    horizontalalignment='center',
                    verticalalignment='bottom',
                    rotation=30,
                    transform=ax.transAxes,
                    size='larger')
            top = 0.6
        else:
            top = 1.0
        plt.tight_layout(pad=0)

    plt.subplots_adjust(left=0,
                        bottom=0,
                        right=1.0,
                        top=top,
                        wspace=0.2,
                        hspace=0.2)
    plt.show()
    sess.close()
def main(argv=None):
    """
    CIFAR10 CleverHans tutorial
    :return:
    """
    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # CIFAR10-specific dimensions
    img_rows = 32
    img_cols = 32
    channels = 3
    nb_classes = 10

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    sess = tf.Session()

    set_log_level(logging.DEBUG)

    # Get CIFAR10 test data
    X_train, Y_train, X_test, Y_test = data_cifar10()

    # Label smoothing
    assert Y_train.shape[1] == 10.

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, channels))

    y = tf.placeholder(tf.float32, shape=(None, 10))

    model_path = FLAGS.model_path
    nb_samples = FLAGS.nb_samples

    from cnn_models import make_basic_cnn
    model = make_basic_cnn('fp_',
                           input_shape=(None, img_rows, img_cols, channels),
                           nb_filters=FLAGS.nb_filters)

    preds = model(x)
    print("Defined TensorFlow model graph with %d parameters" % model.n_params)

    rng = np.random.RandomState([2017, 8, 30])

    def evaluate(eval_params):
        # Evaluate the model on legitimate test examples
        acc = model_eval(sess, x, y, preds, X_test, Y_test, args=eval_params)
        return acc

    model_load(sess, model_path)
    print('Restored model from %s' % model_path)
    eval_params = {'batch_size': FLAGS.batch_size}
    accuracy = evaluate(eval_params)
    print('Test accuracy on legitimate test examples: {0}'.format(accuracy))

    ###########################################################################
    # Build dataset to perturb
    ###########################################################################
    if FLAGS.targeted:
        from utils import build_targeted_dataset
        adv_inputs, true_labels, adv_ys = build_targeted_dataset(
            X_test, Y_test, np.arange(nb_samples), nb_classes, img_rows,
            img_cols, channels)
        att_batch_size = np.clip(nb_samples * (nb_classes - 1),
                                 a_max=MAX_BATCH_SIZE,
                                 a_min=1)
        nb_adv_per_sample = nb_classes - 1
        yname = "y_target"
    else:
        adv_inputs = X_test[:nb_samples]
        true_labels = Y_test[:nb_samples]
        att_batch_size = np.minimum(nb_samples, MAX_BATCH_SIZE)
        nb_adv_per_sample = 1
        adv_ys = None
        yname = "y"

    print('Crafting ' + str(nb_samples) + ' * ' + str(nb_adv_per_sample) +
          ' adversarial examples')
    print("This could take some time ...")

    if FLAGS.attack == 'pgd':
        from cleverhans.attacks import MadryEtAl
        attacker = MadryEtAl(model, sess=sess)
        attack_params = {
            'eps': FLAGS.eps / 255.,
            'eps_iter': EPS_ITER / 255.,
            'nb_iter': FLAGS.nb_iter,
            'ord': np.inf,
            'rand_init': True,
            'batch_size': att_batch_size
        }
    elif FLAGS.attack == 'cwl2':
        from cleverhans.attacks import CarliniWagnerL2
        attacker = CarliniWagnerL2(model, sess=sess)
        learning_rate = 0.1
        attack_params = {
            'binary_search_steps': 1,
            'max_iterations': FLAGS.nb_iter,
            'learning_rate': learning_rate,
            'initial_const': 10,
            'batch_size': att_batch_size
        }
    attack_params.update({
        'clip_min': 0.,
        'clip_max': 1.,
    })
    # yname: adv_ys})

    X_test_adv = attacker.generate_np(adv_inputs, **attack_params)

    if FLAGS.targeted:
        assert X_test_adv.shape[0] == nb_samples * \
            (nb_classes - 1), X_test_adv.shape
        # Evaluate the accuracy of the CIFAR10 model on adversarial
        # examples
        print("Evaluating targeted results")
        # adv_accuracy = model_eval(sess, x, y, preds, X_test_adv, true_labels,
        adv_accuracy = model_eval(sess,
                                  x,
                                  y,
                                  preds_adv,
                                  adv_inputs,
                                  true_labels,
                                  args=eval_params)
    else:
        # Evaluate the accuracy of the CIFAR10 model on adversarial
        # examples
        print("Evaluating un-targeted results")
        adv_accuracy = model_eval(sess,
                                  x,
                                  y,
                                  preds,
                                  X_test_adv,
                                  Y_test,
                                  args=eval_params)

    print('Test accuracy on adversarial examples %.4f' % adv_accuracy)

    # Compute the avg. distortion introduced by the attack
    diff = np.abs(X_test_adv - adv_inputs)

    percent_perturbed = np.mean(np.sum(diff, axis=(1, 2, 3)))
    print('Avg. L_1 norm of perturbations {0:.4f}'.format(percent_perturbed))

    norm = np.mean(np.sqrt(np.sum(np.square(diff), axis=(1, 2, 3))))
    print('Avg. L_2 norm of perturbations {0:.4f}'.format(norm))

    sess.close()