示例#1
0
    def __init__(self,
                 valsetdir=None,
                 gtvalsetdir=None,
                 gray_mode=False,
                 num_input_frames=NUMFRXSEQ_VAL):
        self.gray_mode = gray_mode

        # Look for subdirs with individual sequences
        seqs_dirs = sorted(glob.glob(os.path.join(valsetdir, VALSEQPATT)))

        # open individual sequences and append them to the sequence list
        sequences = []
        for seq_dir in seqs_dirs:
            seq, _, _ = open_sequence(seq_dir, gray_mode, expand_if_needed=False, \
                 max_num_fr=num_input_frames)
            # seq is [num_frames, C, H, W]
            sequences.append(seq)

        self.sequences = sequences

        gts_dirs = sorted(glob.glob(os.path.join(gtvalsetdir, VALSEQPATT)))
        gts = []
        for gt_dir in gts_dirs:
            gt, _, _ = open_sequence(gt_dir, gray_mode, expand_if_needed=False, \
                 max_num_fr=num_input_frames)
            # gt is [num_frames, C, H, W]
            gts.append(gt)

        self.gts = gts
示例#2
0
def test_fastdvdnet(**args):
    """Denoises all sequences present in a given folder. Sequences must be stored as numbered
    image sequences. The different sequences must be stored in subfolders under the "test_path" folder.

    Inputs:
            args (dict) fields:
                    "model_file": path to model
                    "test_path": path to sequence to denoise
                    "suffix": suffix to add to output name
                    "max_num_fr_per_seq": max number of frames to load per sequence
                    "noise_sigma": noise level used on test set
                    "dont_save_results: if True, don't save output images
                    "no_gpu": if True, run model on CPU
                    "save_path": where to save outputs as png
                    "gray": if True, perform denoising of grayscale images instead of RGB
    """
    # Start time
    start_time = time.time()

    # If save_path does not exist, create it
    logger = init_logger_test(os.path.dirname(args['save_path']))

    # Sets data type according to CPU or GPU modes
    if args['cuda']:
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    # Create models
    print('Loading models ...')
    model_temp = FastDVDnet(num_input_frames=NUM_IN_FR_EXT)

    # Load saved weights
    state_temp_dict = torch.load(args['model_file'])
    if args['cuda']:
        device_ids = [0]
        model_temp = nn.DataParallel(model_temp, device_ids=device_ids).cuda()
    else:
        # CPU mode: remove the DataParallel wrapper
        state_temp_dict = remove_dataparallel_wrapper(state_temp_dict)
    model_temp.load_state_dict(state_temp_dict)

    # Sets the model in evaluation mode (e.g. it removes BN)
    model_temp.eval()

    with torch.no_grad():
        # process data
        seq = open_sequence(args['test_path'], args['first'], args['last'],
                            args['already_norm'])
        seq = torch.from_numpy(seq).to(device)
        seq_time = time.time()

        # Add noise
        if not args['already_noisy']:
            noise = torch.empty_like(seq).normal_(
                mean=0, std=args['noise_sigma']).to(device)
            seqn = seq + noise
        else:
            seqn = seq
        noisestd = torch.FloatTensor([args['noise_sigma']]).to(device)

        denframes = denoise_seq_fastdvdnet(seq=seqn,
                                           noise_std=noisestd,
                                           temp_psz=NUM_IN_FR_EXT,
                                           model_temporal=model_temp)

    # Compute PSNR and log it
    stop_time = time.time()
    psnr = compute_psnr(denframes.cpu().numpy(), seq.cpu().numpy(), 1.)
    psnr_noisy = compute_psnr(seqn.cpu().numpy().squeeze(),
                              seq.cpu().numpy(), 1.)
    loadtime = (seq_time - start_time)
    runtime = (stop_time - seq_time)
    seq_length = seq.size()[0]
    logger.info("Finished denoising {}".format(args['test_path']))
    logger.info(
        "\tDenoised {} frames in {:.3f}s, loaded seq in {:.3f}s".format(
            seq_length, runtime, loadtime))
    logger.info("\tPSNR noisy {:.4f}dB, PSNR result {:.4f}dB".format(
        psnr_noisy, psnr))

    # Save outputs
    if not args['dont_save_results']:
        # Save sequence
        save_out_seq(denframes.cpu(), args['save_path'], args['first'])

    # close logger
    close_logger(logger)
示例#3
0
def test_dvdnet(**args):
	"""Denoises all sequences present in a given folder. Sequences must be stored as numbered
	image sequences. The different sequences must be stored in subfolders under the "test_path" folder.

	Inputs:
		args (dict) fields:
			"model_spatial_file": path to model of the pretrained spatial denoiser
			"model_temp_file": path to model of the pretrained temporal denoiser
			"test_path": path to sequence to denoise
			"suffix": suffix to add to output name
			"max_num_fr_per_seq": max number of frames to load per sequence
			"noise_sigma": noise level used on test set
			"dont_save_results: if True, don't save output images
			"no_gpu": if True, run model on CPU
			"save_path": where to save outputs as png
	"""
	start_time = time.time()

	# If save_path does not exist, create it
	if not os.path.exists(args['save_path']):
		os.makedirs(args['save_path'])
	logger = init_logger_test(args['save_path'])

	# Sets data type according to CPU or GPU modes
	if args['cuda']:
		device = torch.device('cuda')
	else:
		device = torch.device('cpu')

	# Create models
	model_spa = DVDnet_spatial()
	model_temp = DVDnet_temporal(num_input_frames=NUM_IN_FRAMES)

	# Load saved weights
	state_spatial_dict = torch.load(args['model_spatial_file'])
	state_temp_dict = torch.load(args['model_temp_file'])
	if args['cuda']:
		device_ids = [0]
		model_spa = nn.DataParallel(model_spa, device_ids=device_ids).cuda()
		model_temp = nn.DataParallel(model_temp, device_ids=device_ids).cuda()
	else:
		# CPU mode: remove the DataParallel wrapper
		state_spatial_dict = remove_dataparallel_wrapper(state_spatial_dict)
		state_temp_dict = remove_dataparallel_wrapper(state_temp_dict)
	model_spa.load_state_dict(state_spatial_dict)
	model_temp.load_state_dict(state_temp_dict)

	# Sets the model in evaluation mode (e.g. it removes BN)
	model_spa.eval()
	model_temp.eval()

	with torch.no_grad():
		# process data
		seq, _, _ = open_sequence(args['test_path'],\
									False,\
									expand_if_needed=False,\
									max_num_fr=args['max_num_fr_per_seq'])
		seq = torch.from_numpy(seq[:, np.newaxis, :, :, :]).to(device)

		seqload_time = time.time()

		# Add noise
		noise = torch.empty_like(seq).normal_(mean=0, std=args['noise_sigma']).to(device)
		seqn = seq + noise
		noisestd = torch.FloatTensor([args['noise_sigma']]).to(device)

		denframes = denoise_seq_dvdnet(seq=seqn,\
										noise_std=noisestd,\
										temp_psz=NUM_IN_FRAMES,\
										model_temporal=model_temp,\
										model_spatial=model_spa,\
										mc_algo=MC_ALGO)
		den_time = time.time()

	# Compute PSNR and log it
	psnr = batch_psnr(denframes, seq.squeeze(), 1.)
	psnr_noisy = batch_psnr(seqn.squeeze(), seq.squeeze(), 1.)
	print("\tPSNR on {} : {}\n".format(os.path.split(args['test_path'])[-1], psnr))
	print("\tDenoising time: {:.2f}s".format(den_time - seqload_time))
	print("\tSequence loaded in : {:.2f}s".format(seqload_time - start_time))
	print("\tTotal time: {:.2f}s\n".format(den_time - start_time))
	logger.info("%s, %s, PSNR noisy %fdB, PSNR %f dB" % \
			 (args['test_path'], args['suffix'], psnr_noisy, psnr))

	# Save outputs
	if not args['dont_save_results']:
		# Save sequence
		save_out_seq(seqn, denframes, args['save_path'], int(args['noise_sigma']*255), \
					   args['suffix'], args['save_noisy'])

	# close logger
	close_logger(logger)
示例#4
0
def test_fastdvdnet(**args):
    """Denoises all sequences present in a given folder. Sequences must be stored as numbered
	image sequences. The different sequences must be stored in subfolders under the "test_path" folder.

	Inputs:
			args (dict) fields:
					"model_file": path to model
					"test_path": path to sequence to denoise
					"suffix": suffix to add to output name
					"max_num_fr_per_seq": max number of frames to load per sequence
					"dont_save_results: if True, don't save output images
					"no_gpu": if True, run model on CPU
					"save_path": where to save outputs as png
					"gray": if True, perform denoising of grayscale images instead of RGB
	"""
    # Start time
    start_time = time.time()

    # If save_path does not exist, create it
    if not os.path.exists(args['save_path']):
        os.makedirs(args['save_path'])
    logger = init_logger_test(args['save_path'])

    # Sets data type according to CPU or GPU modes
    if args['cuda']:
        device = args['device_id'][0]
    else:
        device = torch.device('cpu')

    # Create models
    print('Loading models ...')
    model_temp = FastDVDnet(num_input_frames=NUM_IN_FR_EXT)

    # Load saved weights
    state_temp_dict = torch.load(args['model_file'])
    if args['cuda']:
        device_ids = args['device_id']
        model_temp = nn.DataParallel(model_temp,
                                     device_ids=device_ids).cuda(device)
    else:
        # CPU mode: remove the DataParallel wrapper
        state_temp_dict = remove_dataparallel_wrapper(state_temp_dict)
    model_temp.load_state_dict(state_temp_dict)

    # Sets the model in evaluation mode (e.g. it removes BN)
    model_temp.eval()

    gt = None
    with torch.no_grad():
        # process data
        seq, _, _ = open_sequence(args['test_path'],
                                  args['gray'],
                                  expand_if_needed=False,
                                  max_num_fr=args['max_num_fr_per_seq'])
        seq = torch.from_numpy(seq).to(device)
        seq_time = time.time()

        denframes = denoise_seq_fastdvdnet(seq=seq,
                                           temp_psz=NUM_IN_FR_EXT,
                                           model_temporal=model_temp)

        if args['gt_path'] is not None:
            gt, _, _ = open_sequence(args['gt_path'],
                                     args['gray'],
                                     expand_if_needed=False,
                                     max_num_fr=args['max_num_fr_per_seq'])
            gt = torch.from_numpy(gt).to(device)

    # Compute PSNR and log it
    stop_time = time.time()
    if gt is None:
        psnr = 0
        psnr_noisy = 0
    else:
        psnr = batch_psnr(denframes, gt, 1.)
        psnr_noisy = batch_psnr(seq.squeeze(), gt, 1.)
    loadtime = (seq_time - start_time)
    runtime = (stop_time - seq_time)
    seq_length = seq.size()[0]
    logger.info("Finished denoising {}".format(args['test_path']))
    logger.info(
        "\tDenoised {} frames in {:.3f}s, loaded seq in {:.3f}s".format(
            seq_length, runtime, loadtime))
    logger.info("\tPSNR noisy {:.4f}dB, PSNR result {:.4f}dB".format(
        psnr_noisy, psnr))

    # Save outputs
    if not args['dont_save_results']:
        # Save sequence
        save_out_seq(seq, denframes, args['save_path'], 0, args['suffix'],
                     args['save_noisy'])

    # close logger
    close_logger(logger)
示例#5
0
def test_fastdvdnet(**args):
    """Denoises all sequences present in a given folder. Sequences must be stored as numbered
    image sequences. The different sequences must be stored in subfolders under the "test_path" folder.

    Inputs:
            args (dict) fields:
                    "model_file": path to model
                    "test_path": path to sequence to denoise
                    "suffix": suffix to add to output name
                    "max_num_fr_per_seq": max number of frames to load per sequence
                    "noise_sigma": noise level used on test set
                    "dont_save_results: if True, don't save output images
                    "no_gpu": if True, run model on CPU
                    "save_path": where to save outputs as png
                    "gray": if True, perform denoising of grayscale images instead of RGB
    """


    # If save_path does not exist, create it
    if not os.path.exists(args['save_path']):
        os.makedirs(args['save_path'])
    logger = init_logger_test(args['save_path'])

    # Sets data type according to CPU or GPU modes
    if args['cuda']:
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    # Create models
    print('Loading models ...')
    model_temp = FastDVDnet(num_input_frames=NUM_IN_FR_EXT)

    # Load saved weights
    state_temp_dict = torch.load(args['model_file'])
    if args['cuda']:
        device_ids = [0]
        model_temp = nn.DataParallel(model_temp, device_ids=device_ids).cuda()
    else:
        # CPU mode: remove the DataParallel wrapper
        state_temp_dict = remove_dataparallel_wrapper(state_temp_dict)
    model_temp.load_state_dict(state_temp_dict)

    # Sets the model in evaluation mode (e.g. it removes BN)
    model_temp.eval()
    processed_count = 0
    # To avoid out of memory issues, we only process one folder at a time.
    for tmp_folder in get_next_folder(args['test_path'], args['max_num_fr_per_seq']):
        folder = tmp_folder.name
         # Start time
        print("Processing {}".format(os.listdir(tmp_folder.name)))
        logger.info("Processing {}".format(os.listdir(folder)))
        start_time = time.time()
        with torch.no_grad():
            # process data
            seq, _, _ = open_sequence(folder,
                                    args['gray'],
                                    expand_if_needed=False,
                                    max_num_fr=args['max_num_fr_per_seq'])
            seq = torch.from_numpy(seq).to(device)
            seq_time = time.time()

            # Add noise
            noise = torch.empty_like(seq).normal_(
                mean=0, std=args['noise_sigma']).to(device)
            seqn = seq + noise
            noisestd = torch.FloatTensor([args['noise_sigma']]).to(device)

            denframes = denoise_seq_fastdvdnet(seq=seqn,
                                            noise_std=noisestd,
                                            temp_psz=NUM_IN_FR_EXT,
                                            model_temporal=model_temp)

            # Compute PSNR and log it
            stop_time = time.time()
            psnr = batch_psnr(denframes, seq, 1.)
            psnr_noisy = batch_psnr(seqn.squeeze(), seq, 1.)
            loadtime = (seq_time - start_time)
            runtime = (stop_time - seq_time)
            seq_length = seq.size()[0]
            logger.info("Finished denoising {}".format(args['test_path']))
            logger.info("\tDenoised {} frames in {:.3f}s, loaded seq in {:.3f}s".
                        format(seq_length, runtime, loadtime))
            logger.info(
                "\tPSNR noisy {:.4f}dB, PSNR result {:.4f}dB".format(psnr_noisy, psnr))

            # Save outputs
            if not args['dont_save_results']:

                # Save sequence
                save_out_seq(seqn, denframes, args['save_path'],
                            int(args['noise_sigma']*255), args['suffix'], args['save_noisy'], processed_count)
                # subtract half stride because of the half-steps get_next_folder takes.
                processed_count+=seqn.size()[0]

    # close logger
    close_logger(logger)