示例#1
0
def validate(a_l,
             b_l,
             c_l,
             a_u,
             b_u,
             c_u,
             x_minus,
             x_plus,
             y_minus,
             y_plus,
             verify_and_modify_all=False,
             max_iter=100,
             plot=False,
             eps=1e-5,
             print_info=True):
    # eps =1e-5
    original_shape = c_l.shape

    a_l_new = a_l.view(-1)  #.data.clone()
    b_l_new = b_l.view(-1)  #.data.clone()
    c_l_new = c_l.view(-1)  #.data.clone()

    a_u_new = a_u.view(-1)  #.data.clone()
    b_u_new = b_u.view(-1)  #.data.clone()
    c_u_new = c_u.view(-1)  #.data.clone()

    x_minus_new = x_minus.view(-1)  #.data.clone()
    x_plus_new = x_plus.view(-1)  #.data.clone()
    y_minus_new = y_minus.view(-1)  #.data.clone()
    y_plus_new = y_plus.view(-1)  #.data.clone()

    N = a_l_new.size(0)

    if verify_and_modify_all:
        max_iter = N

    for i in range(max_iter):

        if verify_and_modify_all:
            n = i
        else:
            n = torch.randint(0, N, [1])
            n = n.long()

        hl_fl, hu_fu = plot_2_surface(x_minus_new[n],
                                      x_plus_new[n],
                                      y_minus_new[n],
                                      y_plus_new[n],
                                      a_l_new[n],
                                      b_l_new[n],
                                      c_l_new[n],
                                      a_u_new[n],
                                      b_u_new[n],
                                      c_u_new[n],
                                      plot=plot)

        # print('hl-fl max', hl_fl.max())
        # print('hu-fu min', hu_fu.min())
        if print_info:
            print(
                'tanh sigmoid iter: %d num: %d hl-f max %.6f mean %.6f hu-f min %.6f mean %.6f'
                % (i, n, hl_fl.max(), hl_fl.mean(), hu_fu.min(), hu_fu.mean()))
        if hl_fl.max() > eps:  #we want hl_fl.max() < 0
            print(x_minus_new[n], x_plus_new[n], y_minus_new[n], y_plus_new[n],
                  a_l_new[n], b_l_new[n], c_l_new[n], a_u_new[n], b_u_new[n],
                  c_u_new[n])
            plot_surface(x_minus_new[n], x_plus_new[n], y_minus_new[n],
                         y_plus_new[n], a_l_new[n], b_l_new[n], c_l_new[n])
            print('hl-f max', hl_fl.max())
            raise Exception('lower plane fail')
            break

        if hl_fl.max() > 0 and verify_and_modify_all:
            c_l_new[n] = c_l_new[n] - hl_fl.max() * 2

        if hu_fu.min() < -eps:  # we want hu_fu.min()>0
            print(x_minus_new[n], x_plus_new[n], y_minus_new[n], y_plus_new[n],
                  a_l_new[n], b_l_new[n], c_l_new[n], a_u_new[n], b_u_new[n],
                  c_u_new[n])
            plot_surface(x_minus_new[n], x_plus_new[n], y_minus_new[n],
                         y_plus_new[n], a_u_new[n], b_u_new[n], c_u_new[n])
            print('hu-f min', hu_fu.min())
            raise Exception('upper plane fail')
            break
        if hu_fu.min() < 0 and verify_and_modify_all:
            c_u_new[n] = c_u_new[n] - hu_fu.min() * 2
    c_l_new = c_l_new.view(original_shape)
    c_u_new = c_u_new.view(original_shape)
    return c_l_new, c_u_new
示例#2
0
    length = 3
    x_minus = torch.Tensor([-length])
    x_plus = torch.Tensor([length])
    y_minus = torch.Tensor([-1])
    y_plus = torch.Tensor([length])

    num = [0]
    device = torch.device('cpu')
    # x_minus = ((torch.rand(num, device=device) - 0.5) * 10)
    # x_plus = (torch.rand(num, device=device)*5 + x_minus)
    # y_minus = ((torch.rand(num, device=device)-0.5) * 10)
    # y_plus = (torch.rand(num, device=device)*5 + y_minus)

    print_info = False
    start = time.time()
    a_l, b_l, c_l, a_u, b_u, c_u = bound_tanh_sigmoid(x_minus,
                                                      x_plus,
                                                      y_minus,
                                                      y_plus,
                                                      fine_tune_c=False,
                                                      use_1D_line=False,
                                                      use_constant=False,
                                                      print_info=print_info)
    end = time.time()
    v1, v2 = plot_2_surface(x_minus[num], x_plus[num], y_minus[num],
                            y_plus[num], a_l[num], b_l[num], c_l[num],
                            a_u[num], b_u[num], c_u[num])
    # validate(a_l,b_l,c_l,a_u,b_u,c_u,x_minus, x_plus, y_minus, y_plus,
    #           max_iter=100,plot=False, eps=1e-4, print_info = print_info)
    print('time used:', end - start)
示例#3
0
        print_info=print_info)
    increase = raise_upper_plane(loss1, loss2, loss3, loss4, a_best, b_best,
                                 c_best, x_minus, x_plus, y_minus, y_plus)
    c_best = c_best + increase
    return a_best.detach(), b_best.detach(), c_best.detach()


if __name__ == '__main__':

    x_minus = torch.Tensor([0.062])
    x_plus = torch.Tensor([5])
    y_minus = torch.Tensor([0.1032])
    y_plus = torch.Tensor([5.3253])

    print_info = False

    a, b, c = main_lower(x_minus,
                         x_plus,
                         y_minus,
                         y_plus,
                         print_info=print_info)
    a_best, b_best, c_best = main_upper(x_minus,
                                        x_plus,
                                        y_minus,
                                        y_plus,
                                        print_info=print_info)

    num = 0
    v1, v2 = plot_2_surface(x_minus[num], x_plus[num], y_minus[num],
                            y_plus[num], a[num], b[num], c[num], a_best[num],
                            b_best[num], c_best[num])
示例#4
0
        lr=1e-2,
        max_iter=500,
        print_info=print_info)
    return a_upper.detach(), b_upper.detach(), c_upper.detach()


if __name__ == '__main__':
    x_minus = torch.Tensor([-5.2])
    x_plus = torch.Tensor([-0.1])
    y_minus = torch.Tensor([0.1])
    y_plus = torch.Tensor([5.2])
    num = 0

    print_info = False

    a_lower, b_lower, c_lower = main_lower(x_minus,
                                           x_plus,
                                           y_minus,
                                           y_plus,
                                           print_info=print_info)

    a_upper, b_upper, c_upper = main_upper(x_minus,
                                           x_plus,
                                           y_minus,
                                           y_plus,
                                           print_info=print_info)

    v1, v2 = plot_2_surface(x_minus[num], x_plus[num], y_minus[num],
                            y_plus[num], a_lower[num], b_lower[num],
                            c_lower[num], a_upper[num], b_upper[num],
                            c_upper[num])
示例#5
0
 I_l = (X_l>=0).float()
 I_u = (X_u>=0).float()
 
 #k_l y + b_l <= sigmoid(y) <= k_u y + b_u
 #X_l*k_l y + X_l*b_l <= tanh(x)sigmoid(y), when X_l>=0
 #X_l*k_u y + X_l*b_u <= tanh(x)sigmoid(y), when X_l<0
 
 alpha_l = torch.zeros(x_minus.shape, device=x_minus.device)
 beta_l = I_l * X_l * kl + (1-I_l) * X_l * ku
 gamma_l = I_l * X_l * bl + (1-I_l) * X_l * bu
 
 #tanh(x)sigmoid(y) <= X_u*k_u y + X_u*b_u, when X_u>=0
 #tanh(x)sigmoid(y) <= X_u*k_l y + X_u*b_l, when X_u<0
 
 alpha_u = torch.zeros(x_plus.shape, device=x_minus.device)
 beta_u = I_u * X_u * ku + (1-I_u) * X_u * kl
 gamma_u = I_u * X_u * bu + (1-I_u) * X_u * bl
 
 idx= (0,0)
 
 # plot_surface(x_minus, x_plus,y_minus, y_plus, alpha_l,beta_l,gamma_l)
 plot_2_surface(x_minus[idx], x_plus[idx],y_minus[idx], y_plus[idx], 
                alpha_l[idx],beta_l[idx],gamma_l[idx],
              alpha_u[idx],beta_u[idx],gamma_u[idx], plot=True, num_points=20)