示例#1
0
文件: test.py 项目: imdsafi09/ldopc
def inference():
    config_name = 'config.json'
    config, _, _, _ = load_config(config_name)
    if torch.cuda.is_available():
        device = 'cuda'
        net = LDOPC(config['use_bn']).cuda()
    else:
        device = 'cpu'
        net = LDOPC(config['use_bn']).cpu()

    net.load_state_dict(
        torch.load(get_model_name(config['name']), map_location=device))
    net.set_decode(True)
    loader, _ = get_data_loader(batch_size=1,
                                use_npy=config['use_npy'],
                                frame_range=config['frame_range'])

    net.eval()
    image_id = 25
    threshold = config['cls_threshold']

    with torch.no_grad():
        pc_feature, label_map = loader.dataset[image_id]
        pc_feature = pc_feature.to(device)
        label_map = label_map.to(device)
        label_map_unnorm, label_list = loader.dataset.get_label(image_id)

        t_start = time.time()
        pred = net(pc_feature.unsqueeze(0)).squeeze_(0)
        print("Forward pass time", time.time() - t_start)

        cls_pred = pred[..., 0]
        activation = cls_pred > threshold

        num_boxes = int(activation.sum())
        if num_boxes == 0:
            print("No bounding box found")
            return

        corners = torch.zeros((num_boxes, 8))
        for i in range(1, 9):
            corners[:, i - 1] = torch.masked_select(pred[..., i], activation)
        corners = corners.view(-1, 4, 2).numpy()

        scores = (torch.masked_select(pred[..., 0], activation)).cpu().numpy()

        t_start = time.time()
        selected_ids = non_max_suppression(corners, scores,
                                           config['nms_iou_threshold'])
        corners = corners[selected_ids]
        scores = scores[selected_ids]
        print("Non max suppression time:", time.time() - t_start)
        pc_feature = pc_feature.cpu().numpy()
        plot_bev(pc_feature, label_list, window_name='GT')
        plot_bev(pc_feature, corners, window_name='Prediction')
        plot_label_map(cls_pred.cpu().numpy())
        cv2.waitKey(0)
示例#2
0
def experiment(config_name, device):
    config, _, _, _ = load_config(config_name)
    net, criterion = build_model(config, device, train=False)
    net.load_state_dict(
        torch.load(get_model_name(config['name']), map_location=device))
    net.set_decode(True)
    loader, _ = get_data_loader(batch_size=1,
                                use_npy=config['use_npy'],
                                frame_range=config['frame_range'])
    net.eval()

    image_id = 25
    threshold = config['cls_threshold']

    with torch.no_grad():
        input, label_map = loader.dataset[image_id]
        input = input.to(device)
        label_map = label_map.to(device)
        label_map_unnorm, label_list = loader.dataset.get_label(image_id)

        # Forward Pass
        t_start = time.time()
        pred = net(input.unsqueeze(0)).squeeze_(0)
        print("Forward pass time", time.time() - t_start)

        # Select all the bounding boxes with classification score above threshold
        cls_pred = pred[..., 0]
        activation = cls_pred > threshold

        # Compute (x, y) of the corners of selected bounding box
        num_boxes = int(activation.sum())
        if num_boxes == 0:
            print("No bounding box found")
            return

        corners = torch.zeros((num_boxes, 8))
        for i in range(1, 9):
            corners[:, i - 1] = torch.masked_select(pred[..., i], activation)
        corners = corners.view(-1, 4, 2).numpy()

        scores = torch.masked_select(pred[..., 0], activation).numpy()

        # NMS
        t_start = time.time()
        selected_ids = non_max_suppression(corners, scores,
                                           config['nms_iou_threshold'])
        corners = corners[selected_ids]
        scores = scores[selected_ids]
        print("Non max suppression time:", time.time() - t_start)

        # Visualization
        input_np = input.cpu().numpy()
        plot_bev(input_np, label_list, window_name='GT')
        plot_bev(input_np, corners, window_name='Prediction')
        plot_label_map(cls_pred.numpy())
示例#3
0
def eval_one(net,
             loss_fn,
             config,
             loader,
             image_id,
             device,
             plot=False,
             verbose=False):
    input, label_map, image_id = loader.dataset[image_id]
    input = input.to(device)
    label_map, label_list = loader.dataset.get_label(image_id)
    loader.dataset.reg_target_transform(label_map)
    label_map = torch.from_numpy(label_map).permute(2, 0,
                                                    1).unsqueeze_(0).to(device)

    # Forward Pass
    t_start = time.time()
    pred = net(input.unsqueeze(0))
    t_forward = time.time() - t_start

    loss, cls_loss, loc_loss = loss_fn(pred, label_map)
    pred.squeeze_(0)
    cls_pred = pred[0, ...]

    if verbose:
        print("Forward pass time", t_forward)

    # Filter Predictions
    t_start = time.time()
    corners, scores = filter_pred(config, pred)
    t_post = time.time() - t_start

    if verbose:
        print("Non max suppression time:", t_post)

    gt_boxes = np.array(label_list)
    gt_match, pred_match, overlaps = compute_matches(gt_boxes,
                                                     corners,
                                                     scores,
                                                     iou_threshold=0.5)

    num_gt = len(label_list)
    num_pred = len(scores)
    input_np = input.cpu().permute(1, 2, 0).numpy()
    pred_image = get_bev(input_np, corners)

    if plot == True:
        # Visualization
        plot_bev(input_np, label_list, window_name='GT')
        plot_bev(input_np, corners, window_name='Prediction')
        plot_label_map(cls_pred.numpy())

    return num_gt, num_pred, scores, pred_image, pred_match, loss.item(
    ), t_forward, t_post
示例#4
0
def test0():
    k = KITTI()

    id = 25
    k.load_velo()
    tstart = time.time()
    scan = k.load_velo_scan(id)
    processed_v = k.lidar_preprocess(scan)
    label_map, label_list = k.get_label(id)
    print('time taken: %gs' % (time.time() - tstart))
    plot_bev(processed_v, label_list)
    plot_label_map(label_map[:, :, 6])