np.column_stack((dats[lmin_index:lmax_index, 0, 0], no_marginalized_ell)), header=header) np.savetxt('data/{}/marginalized_ell_CMB_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format(output_folder, lmin, lmax, N_det, fsky), np.column_stack((dats[lmin_index:lmax_index, 0, 0], marginalized_ell)), header=header) np.save('data/{}/full_fisher_mat_CMB_lmin={}_lmax={}_ndet={}_fsky={}.npy'.format(output_folder, lmin, lmax, N_det, fsky), fisher_save) np.savetxt('data/{}/ell_indeces_CMB_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format(output_folder, lmin, lmax, N_det, fsky), dats[lmin_index:lmax_index, 0, 0], header=header) # utils.study_prior_tau_on_N_eff(fid, fisher, 'data/' + output_folder, header) print 'finally how much constraint on parameters without prior?' print '' fisher_single = fisher.copy() fisher_inv = np.linalg.inv(fisher_single) utils.save_cov_matrix( fisher_inv, 'data/{}/param_cov_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format(output_folder, lmin, lmax, N_det, fsky)) np.savetxt('data/{}/invetered_sqrt_fisher_CMB_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format(output_folder, lmin, lmax, N_det, fsky), np.sqrt(fisher_inv), header=header) np.savetxt('data/{}/fisher_mat_CMB_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format(output_folder, lmin, lmax, N_det, fsky), fisher_single, header=header) print 'fisher=', fisher utils.print_resume_stat(fisher_single, fid)
'data/{}/fisher_mat_joint_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format( output_folder, lmin, lmax, N_det, fsky), fisher_single, header=header) print 'finally how much constraint on parameters without external prior?' print '' fisher_inv = np.linalg.inv(fisher_single) utils.save_cov_matrix( fisher_inv, 'data/{}/param_cov_lmin={}_lmax={}_ndet={}_fsky={}.txt'.format( output_folder, lmin, lmax, N_det, fsky)) np.savetxt( 'data/{}/invetered_sqrt_fisher_joint_lmin={}_lmax={}_ndet={}_fsky={}.txt' .format(output_folder, lmin, lmax, N_det, fsky), np.sqrt(fisher_inv), header=header) print 'fisher=', fisher no_lcdm_parameters = ['massless_neutrinos', 'w', 'omnuh2'] plot_now = ['omnuh2'] excluded_parameters = list(set(no_lcdm_parameters) - set(plot_now)) par_gaps, values, fid, fisher_single = utils.exclude_parameters_from_fisher( excluded_parameters, par_gaps, values, fid, fisher_single) utils.print_resume_stat(fisher_single, fid)
label['scalar_amp(1)'] = 'A_{s}' label['scalar_spectral_index(1)'] = 'n_{s}' label['omnuh2'] = r'\Omega_{\nu}h^{2}' label['re_optical_depth'] = r'\tau' label['ombh2'] = '\Omega_{b}h^{2}' label['ombch2'] = '\Omega_{m}h^{2}' label['omch2'] = '\Omega_{c}h^{2}' label['helium_fraction'] = 'Y_{p}' label['w'] = 'w' label['wa'] = 'w_a' label['scalar_nrun(1)'] = r'\alpha_{s}' fisher_inv = np.linalg.inv(fisher_mat) fisher_inplace = fisher_mat.copy() utils.print_resume_stat(fisher_mat, fid) # CYCLE ON PARAMETERS (KEYS HERE) for key_y in ['omnuh2']: print key_y sigma_just_CMB_y = (np.sqrt(fisher_inv[fid.keys().index(key_y), fid.keys().index(key_y)])) fg = plt.figure(figsize=fig_dims) ax1 = plt.subplot2grid((1, 1), (0, 0)) ax1.set_color_cycle(Set1_9.mpl_colors) lines = ["-", "--", "-.", ":"] linecycler = cycle(lines) for i, key in enumerate( ['hubble', 'omch2', 'scalar_spectral_index(1)', 'scalar_amp(1)']):