示例#1
0
    def __fillTable(self, useLocal: bool = False):
        self.__setUiToDefault()

        if not useLocal:
            self.tracks.clear()
            self.tracks = u.readFiles(self.paths)

        count = 1
        for tr in self.tracks:
            self.ui.tableItems.insertRow(self.ui.tableItems.rowCount())
            row = self.ui.tableItems.rowCount() - 1

            self.ui.tableItems.setItem(row, 0, NumericTableWidgetItem(count))
            self.ui.tableItems.setItem(row, 1, QTableWidgetItem(tr.filename))
            self.ui.tableItems.setItem(row, 2,
                                       QTableWidgetItem(tr.data["title"]))
            self.ui.tableItems.setItem(row, 3,
                                       QTableWidgetItem(tr.data["artist"]))
            self.ui.tableItems.setItem(row, 4,
                                       QTableWidgetItem(tr.data["album"]))
            self.ui.tableItems.setItem(
                row, 5, NumericTableWidgetItem(tr.data["track"]))
            self.ui.tableItems.setItem(row, 6,
                                       QTableWidgetItem(tr.data["date"]))
            self.ui.tableItems.setItem(row, 7,
                                       QTableWidgetItem(tr.data["comment"]))
            count += 1
        self.ui.tableItems.sortItems(0)
示例#2
0
from sys import argv, exit
import sys
sys.path.append('src')
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from graph import Graph
from utils import readFiles

if __name__ == '__main__':

    vertexes, edges, cities_df, cities_new_cases = readFiles()

    # Treinando o algoritimo.
    graph = Graph(vertexes, edges, cities_df, cities_new_cases)

    n_steps = 105
    city = 3168804  # Tiradentes
    accumulated_curve = []

    for i in range(len(cities_new_cases[city])):
        if i == 0:
            accumulated_curve.append(cities_new_cases[city][0])
        else:
            accumulated_curve.append(cities_new_cases[city][i] +
                                     accumulated_curve[i - 1])

    # executa o projeção novamente com os pesos que ajustaram a curva melhor
    # para cada um dos set de parâmetros.
    max_pred = 0
    df_sets = pd.read_csv('datasets/best_set.csv')
示例#3
0
                    required=True,
                    help='input training matrix data')
# parser.add_argument('--chrN', type=int, required=True, help='chromosome used to train')
#parser.add_argument('--output_filename', type=str, help='where to save the output image')
# parser.add_argument('--scale_factor', type=float, required=True, help='factor by which resolution needed')

#parser.add_argument('--cuda', action='store_true', help='use cuda')
opt = parser.parse_args()

print(opt)

#use_cuda = opt.cuda
#if use_cuda and not torch.cuda.is_available():
#    raise Exception("No GPU found, please run without --cuda")

infile = opt.input_file
# chrN = opt.chrN
# scale = opt.scale_factor

highres = utils.readFiles(infile, chrs_length[chrN - 1] / input_resolution + 1,
                          input_resolution)
highres_sub, index = utils.divide(highres, chrN)
print(highres_sub.shape)
np.save(infile + "highres", highres_sub)

lowres = utils.genDownsample(highres, 1 / float(scale))
lowres_sub, index = utils.divide(lowres, chrN)
print(lowres_sub.shape)
np.save(infile + "lowres", lowres_sub)
#trainConvNet.train(lowres_sub,highres_sub)
示例#4
0
INPUT_AUDIO_DIR = args.INPUT_AUDIO_DIR
SAMPLES = args.SAMPLES
MIN_DUR = args.MIN_DUR
MAX_DUR = args.MAX_DUR
AMP_THESHOLD = args.AMP_THESHOLD
PLOT = args.PLOT > 0
HIGHLIGHT = args.HIGHLIGHT
SAVE_DATA = args.SAVE_DATA > 0
OUTPUT_FILE = args.OUTPUT_FILE

# Audio config
FFT = 2048
HOP_LEN = FFT/4

# Read files
fileGroups, files = readFiles(INPUT_FILES, INPUT_AUDIO_DIR)
fileCount = len(files)
hasGroups = len(fileGroups) > 1
print("Found %s files" % fileCount)

# Make sure output dirs exist
outDirs = [os.path.dirname(OUTPUT_FILE)]
for outDir in outDirs:
    if not os.path.exists(outDir):
        os.makedirs(outDir)

# snatched from: https://github.com/ml4a/ml4a-guides/blob/master/notebooks/audio-tsne.ipynb
def getFeatures(y, sr):
    # y = y[0:sr]  # analyze just first second
    S = librosa.feature.melspectrogram(y, sr=sr, n_mels=128)
    log_S = librosa.amplitude_to_db(S, ref=np.max)
示例#5
0
HiC_max_value = 100

chrs_length = [
    195471971, 182113224, 160039680, 156508116, 151834684, 149736546,
    145441459, 129401213, 124595110, 130694993, 122082543, 120129022,
    120421639, 124902244, 104043685, 98207768, 94987271, 90702639, 61431566
]

delimiter = opt.delimiter
expRes = 10000
## need to make resolution adjustable.
length = chrs_length[chrN - 1] / expRes

# divide the input matrix into sub-matrixes.

inputMatrix = utils.readFiles(input_file, length + 1, expRes, delimiter)
print("inputMatrix is symmetric?")
print(is_symmetric(inputMatrix))

compareMatrix = utils.readFiles(compare_matrix, length + 1, expRes, delimiter)
print("compareMatrix is symmetric?")
print(is_symmetric(compareMatrix))

low_resolution_samples, index = utils.divide(inputMatrix, chrN)

low_resolution_samples = np.minimum(
    HiC_max_value, low_resolution_samples
)  # why use HiC_max_value, in this way, low_resolution_samples will not change.

batch_size = low_resolution_samples.shape[0]  #256
# batch_size=256