def test_regularized_cost_function(self): dimension = 6 X_mapped = map_feature(self.X[:, 0], self.X[:, 1], dimension) m, n = X_mapped.shape X_mapped = np.hstack((np.ones((m, 1)), X_mapped)) theta = np.zeros((n + 1, 1)) lamda = 1.0 cost_loop = regularized_cost_function_loop(X_mapped, self.y, theta, lamda) cost = regularized_cost_function(X_mapped, self.y, theta, lamda) self.assertAlmostEqual(cost_loop, 0.69314718056, places=5) self.assertAlmostEqual(cost, 0.69314718056, places=5)
def test_regularized_cost_function(self): X = np.hstack((np.ones((self.m,1)), self.X)) lamda = 1.0 cost = regularized_cost_function_loop(self.theta1, self.theta2, X, self.y, lamda) self.assertAlmostEqual(cost, 0.383770, places=6)