def on_test_epoch_end(self, trainer, pl_module):
     results = {
         remove_postfix(k, '_epoch'): v
         for k, v in trainer.logged_metrics.items()
         if k.startswith('test_') and not k.endswith('_step')
     }
     tune.report(**results)
示例#2
0
def align_text_fn(item, score_threshold, debug=False):

    audio_path, recognition_text = item
    #print("audio_path=",audio_path)

    audio_dir = os.path.dirname(audio_path)
    base_dir = os.path.dirname(audio_dir)

    news_path = remove_postfix(audio_path.replace("audio", "assets"))
    news_path = os.path.splitext(news_path)[0] + ".txt"

    strip_fn = lambda line: line.strip().replace('"', '').replace("'", "")
    #candidates = [strip_fn(line) for line in open(news_path, encoding='cp949').readlines()]
    candidates = [
        strip_fn(line)
        for line in open(news_path, encoding='utf-8').readlines()
    ]

    scores = { candidate: similarity(candidate, recognition_text) \
                    for candidate in candidates}
    sorted_scores = sorted(scores.items(), key=operator.itemgetter(1))[::-1]

    #jck add
    if len(sorted_scores) < 2:
        print("===========================================================")
        print(">> error : candidates less than 2, news_path=[", news_path, "]")
        print("===========================================================")

    first, second = sorted_scores[0], sorted_scores[1]

    if first[1] > second[1] and first[1] >= score_threshold:
        found_text, score = first
        aligned_text = search_optimal(found_text, recognition_text)

        if debug:
            print("   ", audio_path)
            print("   ", recognition_text)
            print("=> ", found_text)
            print("==>", aligned_text)
            print("=" * 30)

        if aligned_text is not None:
            result = {audio_path: add_punctuation(aligned_text)}
        elif abs(
                len(text_to_sequence(found_text)) -
                len(text_to_sequence(recognition_text))) > 10:
            result = {}
        else:
            result = {
                audio_path: [add_punctuation(found_text), recognition_text]
            }
    else:
        result = {}

    if len(result) == 0:
        result = {audio_path: [recognition_text]}

    return result
示例#3
0
def align_text_fn(item, score_threshold, debug=False):

    audio_path, recognition_text = item
    audio_name = os.path.splitext(os.path.basename(audio_path))[0]

    audio_dir = os.path.dirname(audio_path)
    base_dir = os.path.dirname(audio_dir)

    news_path = remove_postfix(audio_path.replace("wavs", "assets"))
    news_path = os.path.splitext(news_path)[0] + ".txt"

    strip_fn = lambda line: line.strip().replace('"', '').replace("'", "")
    candidates = [
        strip_fn(line)
        for line in open(news_path, 'r', encoding='utf-8').readlines()
    ]

    scores = { candidate: similarity(candidate, recognition_text) \
                    for candidate in candidates}
    sorted_scores = sorted(scores.items(), key=operator.itemgetter(1))[::-1]

    first, second = sorted_scores[0], sorted_scores[1]

    aligned_text = ""
    if first[1] > second[1] and first[1] >= score_threshold:
        found_text, score = first
        aligned_text = search_optimal(found_text, recognition_text)

        if debug:
            print("   ", audio_path)
            print("   ", recognition_text)
            print("=> ", found_text)
            print("==>", aligned_text)
            print("=" * 30)

        if aligned_text is not None:
            aligned_text = add_punctuation(aligned_text)
        elif abs(
                len(text_to_sequence(found_text)) -
                len(text_to_sequence(recognition_text))) > 10:
            aligned_text = ""
        else:
            aligned_text = add_punctuation(found_text)
    else:
        aligned_text = ""

    if aligned_text == "":
        aligned_text = recognition_text

    # Normalization
    if debug:
        print("aligned ==>", aligned_text)

    aligned_text_noramlized = normalize(aligned_text)
    result = {audio_name: [aligned_text, aligned_text_noramlized]}

    return result
 def on_epoch_end(self, trainer, pl_module):
     results = {
         remove_postfix(k, '_epoch'): v
         for k, v in trainer.logged_metrics.items()
         if (k.startswith('train_') or k.startswith('val_'))
         and not k.endswith('_step')
     }
     results['mean_loss'] = results.get('val_loss', results['train_loss'])
     if 'val_accuracy' in results:
         results['mean_accuracy'] = results['val_accuracy']
     # Checkpointing should be done *before* reporting
     # https://docs.ray.io/en/master/tune/api_docs/trainable.html
     with tune.checkpoint_dir(step=trainer.current_epoch) as checkpoint_dir:
         trainer.save_checkpoint(
             os.path.join(checkpoint_dir,
                          f"{type(pl_module).__name__}.ckpt"))
     tune.report(**results)
示例#5
0
def write_mkdocs_yaml_file(docs_directory) -> bool:
    yml_directory = utils.remove_postfix(docs_directory, 'docs/')
    base_file = yml_directory + 'base.yml'
    mkdocs_file = yml_directory + 'mkdocs.yml'
    if os.path.isfile(base_file):
        shutil.copyfile(base_file, mkdocs_file)
    else:
        print(f'Could not find base.yml file in {yml_directory}.')
        return False

    try:
        with open(mkdocs_file, 'a') as file:
            ls = utils.yml_list_from_directory(docs_directory)
            if len(ls) > 0:
                file.writelines(ls)
                return True
            else:
                print('Call to "utils.yml_list_from_directory" failed.')
                return False
    except OSError:
        print(f'Could open file {mkdocs_file}.')
        return False
def align_text_fn(item, score_threshold, debug=False):

    audio_path, recognition_text = item

    audio_dir = os.path.dirname(audio_path)
    base_dir = os.path.dirname(audio_dir)

    news_path = remove_postfix(audio_path.replace("audio", "assets"))
    news_path = os.path.splitext(news_path)[0] + ".txt"

    strip_fn = lambda line: line.strip().replace('"', '').replace("'", "")
    candidates = [
        strip_fn(line)
        for line in open(news_path, encoding='cp949').readlines()
    ]

    scores = { candidate: similarity(candidate, recognition_text) \
        for candidate in candidates}
    sorted_scores = sorted(scores.items(), key=operator.itemgetter(1))[::-1]

    first, second = sorted_scores[0], sorted_scores[1]
    '''
	if first[1] > second[1] and first[1] >= score_threshold:
		found_text, score = first
		aligned_text, align_score = search_optimal(found_text, recognition_text, by_word=True)
	'''
    best_aligned_text = ''
    found_text = ''
    best_simscore = 0.0
    for candidate, simscore in sorted_scores:
        aligned_text, simscore = search_optimal(candidate, recognition_text)
        if simscore > best_simscore:
            best_aligned_text = aligned_text
            best_simscore = simscore
            found_text = candidate
        if simscore == 1.0:
            break

    aligned_text = best_aligned_text
    if len(best_aligned_text) != 0 and best_simscore >= score_threshold:
        if debug:
            print("	  ", audio_path)
            print("	  ", recognition_text)
            print("=> ", found_text)
            print("==>", aligned_text)
            print("=" * 30)

        if aligned_text is not None:
            result = {audio_path: add_punctuation(aligned_text)}
        elif abs(
                len(text_to_sequence(found_text)) -
                len(text_to_sequence(recognition_text))) > 10:
            result = {}
        else:
            result = {
                audio_path: [add_punctuation(found_text), recognition_text]
            }
    else:
        result = {}

    if len(result) == 0:
        result = {audio_path: [recognition_text]}

    return result