示例#1
0
    def __init__(self, device, input_size=None, num_classes=2, trainable=False, conf_thresh=0.05, nms_thresh=0.2, anchor_size=None, hr=False):
        super(YOLOv2slim, self).__init__()
        self.device = device
        self.input_size = input_size
        self.num_classes = num_classes
        self.trainable = trainable
        self.conf_thresh = conf_thresh
        self.nms_thresh = nms_thresh
        self.anchor_size = torch.tensor(anchor_size)
        self.anchor_number = len(anchor_size)
        self.stride = 32
        self.grid_cell, self.all_anchor_wh = self.create_grid(input_size)
        self.scale = np.array([[[input_size[1], input_size[0], input_size[1], input_size[0]]]])
        self.scale_torch = torch.tensor(self.scale.copy(), device=device).float()

        # backbone darknet-tiny
        self.backbone = darknet_tiny(pretrained=trainable, hr=hr)
        
        # detection head
        self.convsets_1 = nn.Sequential(
            SPP(),
            Conv2d(512*4, 256, 1, leakyReLU=True),
            Conv2d(256, 512, 3, 1, leakyReLU=True)
        )

        self.route_layer = Conv2d(256, 32, 1, leakyReLU=True)
        self.reorg = reorg_layer(stride=2)

        self.convsets_2 = Conv2d(640, 512, 3, 1, leakyReLU=True)
        
        # prediction layer
        self.pred_ = nn.Conv2d(512, self.anchor_number*(1 + 4 + self.num_classes), 1)
示例#2
0
    def __init__(self,
                 device,
                 input_size=None,
                 num_classes=20,
                 trainable=False,
                 conf_thresh=0.001,
                 nms_thresh=0.5,
                 anchor_size=None,
                 hr=False):
        super(myYOLOv2, self).__init__()
        self.device = device
        self.input_size = input_size
        self.num_classes = num_classes
        self.trainable = trainable
        self.conf_thresh = conf_thresh
        self.nms_thresh = nms_thresh
        self.anchor_size = torch.tensor(anchor_size)
        self.anchor_number = len(anchor_size)
        self.stride = 32
        self.grid_cell, self.all_anchor_wh = self.create_grid()
        self.scale = np.array(
            [[input_size[1], input_size[0], input_size[1], input_size[0]]])
        self.scale_torch = torch.tensor(self.scale.copy(),
                                        device=device).float()

        # backbone darknet-19
        self.backbone = darknet19(pretrained=trainable, hr=hr)

        # detection head
        self.convsets_1 = nn.Sequential(
            Conv2d(1024, 1024, 3, 1, leakyReLU=True),
            Conv2d(1024, 1024, 3, 1, leakyReLU=True))
        # self.route_alyer = nn.Sequential(
        #     Conv2d(512, 64, 1, leakyReLU=True),
        #     Conv2d(64, 256, 3, padding=1, stride=2, leakyReLU=True)
        # )

        self.route_layer = Conv2d(512, 64, 1, leakyReLU=True)
        self.reorg = reorg_layer(stride=2)

        self.convsets_2 = Conv2d(1280, 1024, 3, 1, leakyReLU=True)

        # prediction layer
        self.pred = nn.Conv2d(1024,
                              self.anchor_number * (1 + 4 + self.num_classes),
                              1)
示例#3
0
    def __init__(self,
                 device,
                 input_size=None,
                 num_classes=20,
                 trainable=False,
                 conf_thresh=0.001,
                 nms_thresh=0.6,
                 anchor_size=None):
        super(YOLOv2R50, self).__init__()
        self.device = device
        self.input_size = input_size
        self.num_classes = num_classes
        self.trainable = trainable
        self.conf_thresh = conf_thresh
        self.nms_thresh = nms_thresh
        self.anchor_size = torch.tensor(anchor_size)
        self.num_anchors = len(anchor_size)
        self.stride = 32
        self.grid_cell, self.all_anchor_wh = self.create_grid(input_size)

        # 主干网络:resnet50
        self.backbone = resnet50(pretrained=trainable)

        # 检测头
        self.convsets_1 = nn.Sequential(Conv(2048, 1024, k=1),
                                        Conv(1024, 1024, k=3, p=1),
                                        Conv(1024, 1024, k=3, p=1))

        # 融合高分辨率的特征信息
        self.route_layer = Conv(1024, 128, k=1)
        self.reorg = reorg_layer(stride=2)

        # 检测头
        self.convsets_2 = Conv(1024 + 128 * 4, 1024, k=3, p=1)

        # 预测曾
        self.pred = nn.Conv2d(1024,
                              self.num_anchors * (1 + 4 + self.num_classes), 1)
示例#4
0
    def __init__(self,
                 device,
                 input_size=None,
                 num_classes=20,
                 trainable=False,
                 conf_thresh=0.001,
                 nms_thresh=0.5,
                 anchor_size=None,
                 hr=False):
        super(YOLOv2D19, self).__init__()
        self.device = device
        self.input_size = input_size
        self.num_classes = num_classes
        self.trainable = trainable
        self.conf_thresh = conf_thresh
        self.nms_thresh = nms_thresh
        self.anchor_size = torch.tensor(anchor_size)
        self.num_anchors = len(anchor_size)
        self.stride = 32
        self.grid_cell, self.all_anchor_wh = self.create_grid(input_size)

        # backbone darknet-19
        self.backbone = darknet19(pretrained=trainable, hr=hr)

        # detection head
        self.convsets_1 = nn.Sequential(Conv(1024, 1024, k=3, p=1),
                                        Conv(1024, 1024, k=3, p=1))

        self.route_layer = Conv(512, 64, k=1)
        self.reorg = reorg_layer(stride=2)

        self.convsets_2 = Conv(1280, 1024, k=3, p=1)

        # prediction layer
        self.pred = nn.Conv2d(1024,
                              self.num_anchors * (1 + 4 + self.num_classes),
                              kernel_size=1)