示例#1
0
 def save(self):
     for idx, (name, array) in enumerate(
             zip([
                 'actions', 'rewards', 'screens', 'terminals', 'prestates',
                 'poststates'
             ], [
                 self.actions, self.rewards, self.screens, self.terminals,
                 self.prestates, self.poststates
             ])):
         save_npy(array, os.path.join(self.model_dir, name))
示例#2
0
def main():
    csv_path = 'data/all_test_clean.csv'
    tweets, targets, labels = load_csv(csv_path)
    print('--- LOADED CSV ---')
    model = load_bert()
    print('--- LOADED MODEL ---')
    preds = predict(model, tweets, targets)
    save_npy(preds, 'ada_bert', 'preds/')
    print('--- SAVED PREDS ---')
    print_metrics(preds, labels, 'ada_bert')
def classify_sentiment(model, tweets, neg_label, name):
    n_chunks = 10
    chunk_size = len(tweets) // n_chunks
    chunks = [
        tweets[x:x + chunk_size] for x in range(0, len(tweets), chunk_size)
    ]
    preds = list()
    for chunk_idx, chunk in enumerate(chunks):
        chunk_out = model(chunk)
        preds += [0 if out['label'] == neg_label else 1 for out in chunk_out]
        print('Chunk', chunk_idx, 'processed')
    save_npy(preds, name, 'preds/')
    return preds
示例#4
0
def train():
    """
    Training function
    Adapted from https://github.com/jesseniagonzalezv/App_segmentation_water_bodies/
    """

    parser = argparse.ArgumentParser()
    arg = parser.add_argument

    # image-related variables
    arg('--image-patches-dir', type=str, default='./data/dataset/split', help='satellite image patches directory')
    arg('--masks-dir', type=str, default='./data/dataset/labels', help='numPy masks directory')
    arg('--npy-dir', type=str, default='./data/dataset/split_npy', help='numPy preprocessed patches directory')

    # preprocessing-related variables
    arg('--val-percent', type=float, default=0.25, help='Validation percent')
    arg('--test-percent', type=float, default=0.10, help='Test percent')

    # training-related variable
    arg('--batch-size', type=int, default=16, help='HR:4,VHR:8')
    arg('--limit', type=int, default=0, help='number of images in epoch')
    arg('--n-epochs', type=int, default=500)
    arg('--lr', type=float, default=1e-3)
    arg('--step', type=float, default=60)
    arg('--model', type=str, help='roof: roof segmentation / income: income determination')
    arg('--out-path', type=str, default='./trained_models/', help='model output path')
    arg('--pretrained', type=int, default=1, help='0: False; 1: True')

    # CUDA devices
    arg('--device-ids', type=str, default='0,1', help='For example 0,1 to run on two GPUs')

    args = parser.parse_args()

    pretrained = True if args.pretrained else False

    if args.model == "roof":
        model = models.UNet11(pretrained=pretrained)
    elif args.model == "income":
        model = models.UNet11(pretrained=pretrained, num_classes=4, input_channels=5)
    else:
        raise ValueError

    if torch.cuda.is_available():
        if args.device_ids:
            device_ids = list(map(int, args.device_ids.split(',')))
        else:
            device_ids = None

        model = torch.nn.DataParallel(model, device_ids=device_ids).cuda()
        cudnn.benchmark = True

    images_filenames = np.array(sorted(glob.glob(args.image_patches_dir + "/*.tif")))

    train_set_indices, val_set_indices, test_set_indices = utils.train_val_test_split(len(images_filenames),
                                                                                      args.val_percent,
                                                                                      args.test_percent)

    images_np_filenames = utils.save_npy(images_filenames, args.npy_dir, args.model, args.masks_dir)

    channel_num = 4 if args.model == "roof" else 5
    max_value, mean_train, std_train = utils.meanstd(np.array(images_np_filenames)[train_set_indices],
                                                     channel_num=channel_num)

    train_transform = DualCompose([
        HorizontalFlip(),
        VerticalFlip(),
        Rotate(),
        ImageOnly(Normalize(mean=mean_train, std=std_train))
    ])

    val_transform = DualCompose([
        ImageOnly(Normalize(mean=mean_train, std=std_train))
    ])

    limit = args.limit if args.limit > 0 else None

    train_loader = utils.make_loader(filenames=np.array(images_np_filenames)[train_set_indices],
                                     mask_dir=args.masks_dir,
                                     dataset=args.model,
                                     shuffle=False,
                                     transform=train_transform,
                                     mode='train',
                                     batch_size=args.batch_size,
                                     limit=limit)

    valid_loader = utils.make_loader(filenames=np.array(images_np_filenames)[val_set_indices],
                                     mask_dir=args.masks_dir,
                                     dataset=args.model,
                                     shuffle=False,
                                     transform=val_transform,
                                     mode='train',
                                     batch_size=args.batch_size,
                                     limit=None)

    dataloaders = {
        'train': train_loader, 'val': valid_loader
    }

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step, gamma=0.1)

    name_file = '_' + str(int(args.val_percent * 100)) + '_percent_' + args.model

    utils.train_model(name_file=name_file,
                      model=model,
                      dataset=args.model,
                      optimizer=optimizer,
                      scheduler=scheduler,
                      dataloaders=dataloaders,
                      name_model="Unet11",
                      num_epochs=args.n_epochs)

    if not os.path.exists(args.out_path):
        os.mkdir(args.out_path)

    torch.save(model.module.state_dict(),
               (str(args.out_path) + '/model{}_{}_{}epochs').format(name_file, "Unet11", args.n_epochs))

    find_metrics(train_file_names=np.array(images_np_filenames)[train_set_indices],
                 val_file_names=np.array(images_np_filenames)[val_set_indices],
                 test_file_names=np.array(images_np_filenames)[test_set_indices],
                 mask_dir=args.masks_dir,
                 dataset=args.model,
                 mean_values=mean_train,
                 std_values=std_train,
                 model=model,
                 name_model="Unet11",
                 epochs=args.n_epochs,
                 out_file=args.model,
                 dataset_file=args.model,
                 name_file=name_file)
示例#5
0
 def save(self):
   for idx, (name, array) in enumerate(
       zip(['actions', 'rewards', 'screens', 'terminals', 'prestates', 'poststates'],
           [self.actions, self.rewards, self.screens, self.terminals, self.prestates, self.poststates])):
     save_npy(array, os.path.join(self.model_dir, name))
    def test_test(self,
                  save_dir,
                  is_debug=False,
                  max_degree=10,
                  interval=1,
                  resize_factor=0.25):
        s2_imgs, s3_imgs, s4_imgs = None, None, None
        batch = len(range(-max_degree, max_degree + 1, interval))

        for iter_time in range(self.data.numTestImgs):
            print('[*] Multi-test processing {} / {}...'.format(
                iter_time + 1, self.data.numTestImgs))
            s1_imgs, img_name, user_id = self.sess.run([
                self.model.imgTests, self.model.img_name_test,
                self.model.user_id_test
            ])
            num_imgs, h, w, c = s1_imgs.shape

            print('[*] Stage 1: Forwar the network {} times... '.format(
                int(num_imgs / batch)))
            s1_preds = list()
            for i in range(0, num_imgs, batch):
                pred_imgs = self.sess.run(
                    self.model.predTest,
                    feed_dict={
                        self.model.ratePh: 0.,  # keep_ratio = 1 - rate
                        self.model.trainMode: False,
                        self.model.inputImgPh: s1_imgs[i:i + batch]
                    })
                s1_preds.extend(pred_imgs)
            s1_preds = np.asarray(s1_preds)

            if is_debug:
                # Save stage 1 results: the rotated, flipped, and cropped images
                utils.save_imgs_indiv(s1_imgs,
                                      w_num_imgs=batch,
                                      save_dir=os.path.join(save_dir, 'debug'),
                                      img_name=img_name.astype('U26'),
                                      is_label=False,
                                      name_append='s1_img_',
                                      factor=resize_factor)
                utils.save_imgs_indiv(s1_preds,
                                      w_num_imgs=batch,
                                      save_dir=os.path.join(save_dir, 'debug'),
                                      img_name=img_name.astype('U26'),
                                      is_label=True,
                                      name_append='s1_seg_',
                                      factor=resize_factor)

            # Save stage 2 results: the flipped and cropped images
            print('[*] Stage 2: Processing inverse-rotation...')
            s2_preds = utils.inverse_rotate(s1_preds,
                                            batch=batch,
                                            interval=interval,
                                            is_label=True)
            if is_debug:
                s2_imgs = utils.inverse_rotate(s1_imgs,
                                               batch=batch,
                                               interval=interval,
                                               is_label=False)
                utils.save_imgs_indiv(s2_imgs,
                                      w_num_imgs=batch,
                                      save_dir=os.path.join(save_dir, 'debug'),
                                      img_name=img_name.astype('U26'),
                                      is_label=False,
                                      name_append='s2_img_',
                                      factor=resize_factor)
                utils.save_imgs_indiv(s2_preds,
                                      w_num_imgs=batch,
                                      save_dir=os.path.join(save_dir, 'debug'),
                                      img_name=img_name.astype('U26'),
                                      is_label=True,
                                      name_append='s2_seg_',
                                      factor=resize_factor)

            # Save stage 3 results: the cropped images
            print('[*] Stage 3: Processing inverse-flipping...')
            s3_preds = utils.inverse_flip(s2_preds)
            if is_debug:
                s3_imgs = utils.inverse_flip(s2_imgs)
                utils.save_imgs_indiv(s3_imgs,
                                      w_num_imgs=batch,
                                      save_dir=os.path.join(save_dir, 'debug'),
                                      img_name=img_name.astype('U26'),
                                      is_label=False,
                                      name_append='s3_img_',
                                      factor=resize_factor)
                utils.save_imgs_indiv(s3_preds,
                                      w_num_imgs=batch,
                                      save_dir=os.path.join(save_dir, 'debug'),
                                      img_name=img_name.astype('U26'),
                                      is_label=True,
                                      name_append='s3_seg_',
                                      factor=resize_factor)

            # Save stage 4 results
            print('[*] Stage 4: Processing inverse-cropping...')
            s4_preds = utils.inverse_cropping(s3_preds,
                                              batch=batch,
                                              is_label=True)
            if is_debug:
                s4_imgs = utils.inverse_cropping(s3_imgs,
                                                 batch=batch,
                                                 is_label=False)
                utils.save_imgs_indiv(s4_imgs,
                                      w_num_imgs=batch,
                                      save_dir=os.path.join(save_dir, 'debug'),
                                      img_name=img_name.astype('U26'),
                                      is_label=False,
                                      name_append='s4_img_',
                                      factor=resize_factor)
                utils.save_imgs_indiv(s4_preds,
                                      w_num_imgs=batch,
                                      save_dir=os.path.join(save_dir, 'debug'),
                                      img_name=img_name.astype('U26'),
                                      is_label=True,
                                      name_append='s4_seg_',
                                      factor=resize_factor)

            # Save stage 5 results
            print('[*] Stage 5: Calculaing the final prediction...')
            predCls = np.argmax(np.sum(s4_preds, axis=0, keepdims=True),
                                axis=3)
            utils.save_imgs(img_stores=[
                np.expand_dims(s1_imgs[int(batch * 0.5)], axis=0),
                np.expand_dims(np.argmax(s4_preds[int(batch * 0.5)], axis=2),
                               axis=0), predCls
            ],
                            saveDir=os.path.join(save_dir, 'debug'),
                            img_name=img_name.astype('U26'),
                            is_vertical=False)

            # Save images
            print('[*] Saving the input and prediction image...')
            utils.save_imgs(img_stores=[
                np.expand_dims(s1_imgs[int(batch * 0.5)], axis=0), predCls
            ],
                            saveDir=save_dir,
                            img_name=img_name.astype('U26'),
                            is_vertical=False)

            # Write as npy format
            print('[*] Saving .npy files for submission...')
            utils.save_npy(data=predCls,
                           save_dir=save_dir,
                           file_name=img_name.astype('U26'))