示例#1
0
def main(args):
    # Create directories
    if not os.path.exists("./logs"):
        os.makedirs("./logs")

    # Set logs
    log = set_log(args)

    # Create env
    env = make_env(log, args)

    # Set seeds
    random.seed(args.seed)
    np.random.seed(args.seed)
    env.seed(args.seed)

    # Visualize environment
    observations = env.reset()

    for _ in range(args.ep_max_timesteps):
        env.render()

        prey_action = env.action_space.sample()
        predator1_action = env.action_space.sample()
        predator2_action = env.action_space.sample()
        actions = [prey_action, predator1_action, predator2_action]

        observations, reward, done, _ = env.step(actions)

        if done:
            break
示例#2
0
def main():
    parser = argparse.ArgumentParser()
    set_args(parser)
    args = parser.parse_args()

    specify_path(args)
    specify_device(args)
    specify_seed(args)

    print_args = {k: v for k, v in vars(args).items() if k != 'device'}
    print_args = argparse.Namespace(**print_args)
    logger.info('CONFIG:\n%s' %
                json.dumps(vars(print_args), indent=4, sort_keys=True))

    if not args.no_log:
        set_log(args.log_dir)

    tokenizer = RobertaTokenizer.from_pretrained(args.pretrain_bert_dir)
    model = RobertaForPreTraining.from_pretrained(
        args.pretrain_bert_dir,
        pos_tag_embedding=is_pos_embedding,
        senti_embedding=is_senti_embedding,
        polarity_embedding=is_polarity_embedding)
    if args.fp16:
        model.half()
    model.to(args.device)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Load pre-training data
    logging.info('Loading yelp pretraining data...')
    yelp = Yelp(args, tokenizer, max_seq_length=args.max_seq_length)
    sampler = RandomSampler(yelp)
    loader = DataLoader(yelp,
                        sampler=sampler,
                        batch_size=args.batch_size,
                        num_workers=WORKERS,
                        pin_memory=args.cuda)

    optimization_step = int(
        len(yelp) / args.batch_size / args.grad_accum_steps) * args.epochs
    optimizer, scheduler = init_optimizer(args, model, optimization_step)

    train(args, model, tokenizer, loader, optimizer, scheduler)
示例#3
0
def run_polopt_agent(
        env_fn,
        agent=PPOAgent(),
        actor_critic=mlp_actor_critic,
        ac_kwargs=dict(),
        seed=0,
        render=False,
        # Experience collection:
        steps_per_epoch=4000,
        epochs=50,
        max_ep_len=1000,
        # Discount factors:
        gamma=0.99,
        lam=0.97,
        cost_gamma=0.99,
        cost_lam=0.97,
        # Policy learning:
        pi_lr=3e-4,
        ent_reg=0.,
        # Cost constraints / penalties:
        cost_lim=25,
        penalty_init=1.,
        penalty_lr=5e-2,
        # KL divergence:
        target_kl=0.01,
        # Value learning:
        vf_lr=1e-3,
        vf_iters=80,
        # Logging:
        logger=None,
        logger_kwargs=dict(),
        save_freq=1,
        prefix="",
        custom_log=None,
        args=None):

    tb_writer = SummaryWriter('./log/tb_{}'.format(args.log_name))

    #=========================================================================#
    #  Prepare logger, seed, and environment in this process                  #
    #=========================================================================#
    logger = EpochLogger(**logger_kwargs) if logger is None else logger
    logger.save_config(locals())

    seed += 10000 * proc_id()
    tf.set_random_seed(seed)
    np.random.seed(seed)

    env = env_fn()

    agent.set_logger(logger)

    #=========================================================================#
    #  Create computation graph for actor and critic (not training routine)   #
    #=========================================================================#

    # Share information about action space with policy architecture
    ac_kwargs['action_space'] = env.action_space

    # Inputs to computation graph from environment spaces
    x_ph, a_ph = placeholders_from_spaces(env.observation_space,
                                          env.action_space)

    # Inputs to computation graph for batch data
    adv_ph, cadv_ph, ret_ph, cret_ph, logp_old_ph = placeholders(
        *(None for _ in range(5)))

    # Inputs to computation graph for special purposes
    surr_cost_rescale_ph = tf.placeholder(tf.float32, shape=())
    cur_cost_ph = tf.placeholder(tf.float32, shape=())

    # Outputs from actor critic
    ac_outs = actor_critic(x_ph, a_ph, **ac_kwargs)
    pi, logp, logp_pi, pi_info, pi_info_phs, d_kl, ent, v, vc = ac_outs

    # Organize placeholders for zipping with data from buffer on updates
    buf_phs = [x_ph, a_ph, adv_ph, cadv_ph, ret_ph, cret_ph, logp_old_ph]
    buf_phs += values_as_sorted_list(pi_info_phs)

    # Organize symbols we have to compute at each step of acting in env
    get_action_ops = dict(pi=pi, v=v, logp_pi=logp_pi, pi_info=pi_info)

    # If agent is reward penalized, it doesn't use a separate value function
    # for costs and we don't need to include it in get_action_ops; otherwise we do.
    if not (agent.reward_penalized):
        get_action_ops['vc'] = vc

    # Count variables
    var_counts = tuple(count_vars(scope) for scope in ['pi', 'vf', 'vc'])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d, \t vc: %d\n' %
               var_counts)

    # Make a sample estimate for entropy to use as sanity check
    approx_ent = tf.reduce_mean(-logp)

    #=========================================================================#
    #  Create replay buffer                                                   #
    #=========================================================================#

    # Obs/act shapes
    obs_shape = env.observation_space.shape
    act_shape = env.action_space.shape

    # Experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    pi_info_shapes = {k: v.shape.as_list()[1:] for k, v in pi_info_phs.items()}
    buf = CPOBuffer(local_steps_per_epoch, obs_shape, act_shape,
                    pi_info_shapes, gamma, lam, cost_gamma, cost_lam)

    #=========================================================================#
    #  Create computation graph for penalty learning, if applicable           #
    #=========================================================================#

    if agent.use_penalty:
        with tf.variable_scope('penalty'):
            # param_init = np.log(penalty_init)
            param_init = np.log(max(np.exp(penalty_init) - 1, 1e-8))
            penalty_param = tf.get_variable('penalty_param',
                                            initializer=float(param_init),
                                            trainable=agent.learn_penalty,
                                            dtype=tf.float32)
        # penalty = tf.exp(penalty_param)
        penalty = tf.nn.softplus(penalty_param)

    if agent.learn_penalty:
        if agent.penalty_param_loss:
            penalty_loss = -penalty_param * (cur_cost_ph - cost_lim)
        else:
            penalty_loss = -penalty * (cur_cost_ph - cost_lim)
        train_penalty = MpiAdamOptimizer(
            learning_rate=penalty_lr).minimize(penalty_loss)

    #=========================================================================#
    #  Create computation graph for policy learning                           #
    #=========================================================================#

    # Likelihood ratio
    ratio = tf.exp(logp - logp_old_ph)

    # Surrogate advantage / clipped surrogate advantage
    if agent.clipped_adv:
        min_adv = tf.where(adv_ph > 0, (1 + agent.clip_ratio) * adv_ph,
                           (1 - agent.clip_ratio) * adv_ph)
        surr_adv = tf.reduce_mean(tf.minimum(ratio * adv_ph, min_adv))
    else:
        surr_adv = tf.reduce_mean(ratio * adv_ph)

    # Surrogate cost
    surr_cost = tf.reduce_mean(ratio * cadv_ph)

    # Create policy objective function, including entropy regularization
    pi_objective = surr_adv + ent_reg * ent

    # Possibly include surr_cost in pi_objective
    if agent.objective_penalized:
        pi_objective -= penalty * surr_cost
        pi_objective /= (1 + penalty)

    # Loss function for pi is negative of pi_objective
    pi_loss = -pi_objective

    # Optimizer-specific symbols
    if agent.trust_region:

        # Symbols needed for CG solver for any trust region method
        pi_params = get_vars('pi')
        flat_g = tro.flat_grad(pi_loss, pi_params)
        v_ph, hvp = tro.hessian_vector_product(d_kl, pi_params)
        if agent.damping_coeff > 0:
            hvp += agent.damping_coeff * v_ph

        # Symbols needed for CG solver for CPO only
        flat_b = tro.flat_grad(surr_cost, pi_params)

        # Symbols for getting and setting params
        get_pi_params = tro.flat_concat(pi_params)
        set_pi_params = tro.assign_params_from_flat(v_ph, pi_params)

        training_package = dict(flat_g=flat_g,
                                flat_b=flat_b,
                                v_ph=v_ph,
                                hvp=hvp,
                                get_pi_params=get_pi_params,
                                set_pi_params=set_pi_params)

    elif agent.first_order:

        # Optimizer for first-order policy optimization
        train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss)

        # Prepare training package for agent
        training_package = dict(train_pi=train_pi)

    else:
        raise NotImplementedError

    # Provide training package to agent
    training_package.update(
        dict(pi_loss=pi_loss,
             surr_cost=surr_cost,
             d_kl=d_kl,
             target_kl=target_kl,
             cost_lim=cost_lim))
    agent.prepare_update(training_package)

    #=========================================================================#
    #  Create computation graph for value learning                            #
    #=========================================================================#

    # Value losses
    v_loss = tf.reduce_mean((ret_ph - v)**2)
    vc_loss = tf.reduce_mean((cret_ph - vc)**2)

    # If agent uses penalty directly in reward function, don't train a separate
    # value function for predicting cost returns. (Only use one vf for r - p*c.)
    if agent.reward_penalized:
        total_value_loss = v_loss
    else:
        total_value_loss = v_loss + vc_loss

    # Optimizer for value learning
    train_vf = MpiAdamOptimizer(learning_rate=vf_lr).minimize(total_value_loss)

    #=========================================================================#
    #  Create session, sync across procs, and set up saver                    #
    #=========================================================================#

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # Sync params across processes
    sess.run(sync_all_params())

    # Setup model saving
    logger.setup_tf_saver(sess,
                          inputs={'x': x_ph},
                          outputs={
                              'pi': pi,
                              'v': v,
                              'vc': vc
                          })

    #=========================================================================#
    #  Provide session to agent                                               #
    #=========================================================================#
    agent.prepare_session(sess)

    #=========================================================================#
    #  Create function for running update (called at end of each epoch)       #
    #=========================================================================#

    def update():
        cur_cost = logger.get_stats('EpCost')[0]
        c = cur_cost - cost_lim
        if c > 0 and agent.cares_about_cost:
            logger.log('Warning! Safety constraint is already violated.',
                       'red')

        #=====================================================================#
        #  Prepare feed dict                                                  #
        #=====================================================================#

        inputs = {k: v for k, v in zip(buf_phs, buf.get())}
        inputs[surr_cost_rescale_ph] = logger.get_stats('EpLen')[0]
        inputs[cur_cost_ph] = cur_cost

        #=====================================================================#
        #  Make some measurements before updating                             #
        #=====================================================================#

        measures = dict(LossPi=pi_loss,
                        SurrCost=surr_cost,
                        LossV=v_loss,
                        Entropy=ent)
        if not (agent.reward_penalized):
            measures['LossVC'] = vc_loss
        if agent.use_penalty:
            measures['Penalty'] = penalty

        pre_update_measures = sess.run(measures, feed_dict=inputs)
        logger.store(**pre_update_measures)

        #=====================================================================#
        #  Update penalty if learning penalty                                 #
        #=====================================================================#
        if agent.learn_penalty:
            sess.run(train_penalty, feed_dict={cur_cost_ph: cur_cost})

        #=====================================================================#
        #  Update policy                                                      #
        #=====================================================================#
        agent.update_pi(inputs)

        #=====================================================================#
        #  Update value function                                              #
        #=====================================================================#
        for _ in range(vf_iters):
            sess.run(train_vf, feed_dict=inputs)

        #=====================================================================#
        #  Make some measurements after updating                              #
        #=====================================================================#

        del measures['Entropy']
        measures['KL'] = d_kl

        post_update_measures = sess.run(measures, feed_dict=inputs)
        deltas = dict()
        for k in post_update_measures:
            if k in pre_update_measures:
                deltas['Delta' +
                       k] = post_update_measures[k] - pre_update_measures[k]
        logger.store(KL=post_update_measures['KL'], **deltas)

    #=========================================================================#
    #  Run main environment interaction loop                                  #
    #=========================================================================#

    start_time = time.time()
    o, r, d, c, ep_ret, ep_cost, ep_len = env.reset(), 0, False, 0, 0, 0, 0
    cur_penalty = 0
    cum_cost = 0
    counter = 0

    from utils import set_log
    log = set_log(args)

    for epoch in range(epochs):
        if agent.use_penalty:
            cur_penalty = sess.run(penalty)

        for t in range(local_steps_per_epoch):
            # Possibly render
            if render and proc_id() == 0 and t < 1000:
                env.render()

            # Get outputs from policy
            obs = o
            if len(o.shape) == 1:
                obs = np.expand_dims(o, 0)

            get_action_outs = sess.run(get_action_ops, feed_dict={x_ph: obs})
            a = get_action_outs['pi']
            v_t = get_action_outs['v']
            vc_t = get_action_outs.get('vc',
                                       0)  # Agent may not use cost value func
            logp_t = get_action_outs['logp_pi']
            pi_info_t = get_action_outs['pi_info']

            # Step in environment
            o2, r, d, info = env.step(a)

            # Include penalty on cost
            c = info.get('cost', 0)

            # Track cumulative cost over training
            cum_cost += c

            # save and log
            if agent.reward_penalized:
                r_total = r - cur_penalty * c
                r_total = r_total / (1 + cur_penalty)
                buf.store(o, a, r_total, v_t, 0, 0, logp_t, pi_info_t)
            else:
                buf.store(o, a, r, v_t, c, vc_t, logp_t, pi_info_t)
            logger.store(VVals=v_t, CostVVals=vc_t)

            o = o2
            ep_ret += r * pow(0.99, ep_len)
            ep_cost += c * pow(0.99, ep_len)
            ep_len += 1

            terminal = d or (ep_len == max_ep_len)
            if terminal or (t == local_steps_per_epoch - 1):
                # If trajectory didn't reach terminal state, bootstrap value target(s)
                if d and not (ep_len == max_ep_len):
                    # Note: we do not count env time out as true terminal state
                    last_val, last_cval = 0, 0
                else:
                    feed_dict = {x_ph: o[np.newaxis]}
                    if agent.reward_penalized:
                        last_val = sess.run(v, feed_dict=feed_dict)
                        last_cval = 0
                    else:
                        last_val, last_cval = sess.run([v, vc],
                                                       feed_dict=feed_dict)
                buf.finish_path(last_val, last_cval)

                # Only save EpRet / EpLen if trajectory finished
                if terminal:
                    logger.store(EpRet=ep_ret, EpLen=ep_len, EpCost=ep_cost)
                    tb_writer.add_scalar("cost", ep_cost - cost_lim, counter)
                    tb_writer.add_scalar("return", ep_ret, counter)
                    log[args.log_name].info("At iteration {}, cost: {}".format(
                        counter, ep_cost - cost_lim))
                    log[args.log_name].info(
                        "At iteration {}, return: {}".format(counter, ep_ret))
                    counter += 1

                    if counter > 200000:
                        import sys
                        sys.exit()
                else:
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len)

                # Reset environment
                o, r, d, c, ep_ret, ep_len, ep_cost = env.reset(
                ), 0, False, 0, 0, 0, 0

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        #=====================================================================#
        #  Run RL update                                                      #
        #=====================================================================#
        update()

        #=====================================================================#
        #  Cumulative cost calculations                                       #
        #=====================================================================#
        cumulative_cost = mpi_sum(cum_cost)
        cost_rate = cumulative_cost / ((epoch + 1) * steps_per_epoch)

        #=====================================================================#
        #  Log performance and stats                                          #
        #=====================================================================#

        logger.log_tabular('Epoch', epoch)

        # Performance stats
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpCost', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('CumulativeCost', cumulative_cost)
        logger.log_tabular('CostRate', cost_rate)

        # Value function values
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('CostVVals', with_min_and_max=True)

        # Pi loss and change
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)

        # Surr cost and change
        logger.log_tabular('SurrCost', average_only=True)
        logger.log_tabular('DeltaSurrCost', average_only=True)

        # V loss and change
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)

        # Vc loss and change, if applicable (reward_penalized agents don't use vc)
        if not (agent.reward_penalized):
            logger.log_tabular('LossVC', average_only=True)
            logger.log_tabular('DeltaLossVC', average_only=True)

        if agent.use_penalty or agent.save_penalty:
            logger.log_tabular('Penalty', average_only=True)
            logger.log_tabular('DeltaPenalty', average_only=True)
        else:
            logger.log_tabular('Penalty', 0)
            logger.log_tabular('DeltaPenalty', 0)

        # Anything from the agent?
        agent.log()

        # Policy stats
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)

        # Time and steps elapsed
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('Time', time.time() - start_time)

        # Show results!
        logger.dump_tabular()
示例#4
0
                    receiver_elem.attrib.pop('{%s}permission' % MANIFEST_NAMESPACE)
                
            # Service
            for service_elem in manifest_tree.iter(tag='service'):
                service_elem.set('{%s}exported' % MANIFEST_NAMESPACE, 'true')
                if service_elem.attrib.has_key('{%s}permission' % MANIFEST_NAMESPACE):
                    service_elem.attrib.pop('{%s}permission' % MANIFEST_NAMESPACE)
            
            manifest_tree.write(manifest_path)
        except Exception, ex:
            self.has_error = True
            self.log.exception(ex)
            
if __name__ == '__main__':
    # Set log
    utils.set_log()
    
    # Parse args
    parser = argparse.ArgumentParser()
    parser.add_argument('-t', action='store', dest='launcher_type')
    parser.add_argument('-p', action='store', dest='emu_port')
    parser.add_argument('-n', action='store', dest='emu_name')
    
    #args = parser.parse_args(['-t', '1', '-p', '5554', '-n', 'Android'])
    
    args = parser.parse_args()
    try:
        launcher_type = int(args.launcher_type)
        emu_port = args.emu_port
        emu_name = args.emu_name
        
示例#5
0
文件: ppo.py 项目: dkkim93/spinningup
def ppo(env_fn,
        actor_critic=core.MLPActorCritic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        clip_ratio=0.2,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_pi_iters=80,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=1000,
        target_kl=0.01,
        logger_kwargs=dict(),
        save_freq=10):
    """
    Proximal Policy Optimization (by clipping), 

    with early stopping based on approximate KL

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with a 
            ``step`` method, an ``act`` method, a ``pi`` module, and a ``v`` 
            module. The ``step`` method should accept a batch of observations 
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``a``        (batch, act_dim)  | Numpy array of actions for each 
                                           | observation.
            ``v``        (batch,)          | Numpy array of value estimates
                                           | for the provided observations.
            ``logp_a``   (batch,)          | Numpy array of log probs for the
                                           | actions in ``a``.
            ===========  ================  ======================================

            The ``act`` method behaves the same as ``step`` but only returns ``a``.

            The ``pi`` module's forward call should accept a batch of 
            observations and optionally a batch of actions, and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       N/A               | Torch Distribution object, containing
                                           | a batch of distributions describing
                                           | the policy for the provided observations.
            ``logp_a``   (batch,)          | Optional (only returned if batch of
                                           | actions is given). Tensor containing 
                                           | the log probability, according to 
                                           | the policy, of the provided actions.
                                           | If actions not given, will contain
                                           | ``None``.
            ===========  ================  ======================================

            The ``v`` module's forward call should accept a batch of observations
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``v``        (batch,)          | Tensor containing the value estimates
                                           | for the provided observations. (Critical: 
                                           | make sure to flatten this!)
            ===========  ================  ======================================


        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object 
            you provided to PPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        clip_ratio (float): Hyperparameter for clipping in the policy objective.
            Roughly: how far can the new policy go from the old policy while 
            still profiting (improving the objective function)? The new policy 
            can still go farther than the clip_ratio says, but it doesn't help
            on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
            denoted by :math:`\epsilon`. 

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_pi_iters (int): Maximum number of gradient descent steps to take 
            on policy loss per epoch. (Early stopping may cause optimizer
            to take fewer than this.)

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        target_kl (float): Roughly what KL divergence we think is appropriate
            between new and old policies after an update. This will get used 
            for early stopping. (Usually small, 0.01 or 0.05.)

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    # Special function to avoid certain slowdowns from PyTorch + MPI combo.
    setup_pytorch_for_mpi()

    # Set up logger and save configuration
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # Random seed
    seed += 10000 * proc_id()
    torch.manual_seed(seed)
    np.random.seed(seed)

    # Instantiate environment
    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Create actor-critic module
    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)

    # Sync params across processes
    sync_params(ac)

    # Count variables
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # Set up experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Set up function for computing PPO policy loss
    def compute_loss_pi(data):
        obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data[
            'logp']

        # Policy loss
        pi, logp = ac.pi(obs, act)
        ratio = torch.exp(logp - logp_old)
        clip_adv = torch.clamp(ratio, 1 - clip_ratio, 1 + clip_ratio) * adv
        loss_pi = -(torch.min(ratio * adv, clip_adv)).mean()

        # Useful extra info
        approx_kl = (logp_old - logp).mean().item()
        ent = pi.entropy().mean().item()
        clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio)
        clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
        pi_info = dict(kl=approx_kl, ent=ent, cf=clipfrac)

        return loss_pi, pi_info

    # Set up function for computing value loss
    def compute_loss_v(data):
        obs, ret = data['obs'], data['ret']
        return ((ac.v(obs) - ret)**2).mean()

    # Set up optimizers for policy and value function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    # Set up tensorboard logging
    tb_writer = SummaryWriter("tb_ppo_seed::" + str(seed))

    def update():
        data = buf.get()

        pi_l_old, pi_info_old = compute_loss_pi(data)
        pi_l_old = pi_l_old.item()
        v_l_old = compute_loss_v(data).item()

        # Train policy with multiple steps of gradient descent
        for i in range(train_pi_iters):
            pi_optimizer.zero_grad()
            loss_pi, pi_info = compute_loss_pi(data)
            kl = mpi_avg(pi_info['kl'])
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
            loss_pi.backward()
            mpi_avg_grads(ac.pi)  # average grads across MPI processes
            pi_optimizer.step()

        logger.store(StopIter=i)

        # Value function learning
        for i in range(train_v_iters):
            vf_optimizer.zero_grad()
            loss_v = compute_loss_v(data)
            loss_v.backward()
            mpi_avg_grads(ac.v)  # average grads across MPI processes
            vf_optimizer.step()

        # Log changes from update
        kl, ent, cf = pi_info['kl'], pi_info_old['ent'], pi_info['cf']
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(loss_pi.item() - pi_l_old),
                     DeltaLossV=(loss_v.item() - v_l_old))

    # Prepare for interaction with environment
    start_time = time.time()
    o, ep_ret, ep_cost, ep_len, ep_count = env.reset(), 0, 0, 0, 0
    log_name = "ppo_seed::" + str(seed) + "_log"

    from utils import set_log
    log = set_log(log_name)

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        logging_ret, logging_cost = [], []
        for t in range(local_steps_per_epoch):
            a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32))

            next_o, r, d, info = env.step(a)
            ep_ret += r * pow(0.99, ep_len)
            ep_cost += info["cost"] * pow(0.99, ep_len)
            ep_len += 1

            # save and log
            buf.store(o, a, r, v, logp)
            logger.store(VVals=v)

            # Update obs (critical!)
            o = next_o

            timeout = ep_len == max_ep_len
            terminal = d or timeout
            epoch_ended = t == local_steps_per_epoch - 1

            if terminal or epoch_ended:
                if epoch_ended and not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len,
                          flush=True)
                # if trajectory didn't reach terminal state, bootstrap value target
                if timeout or epoch_ended:
                    _, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32))
                else:
                    v = 0
                buf.finish_path(v)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logging_ret.append(ep_ret)
                    logging_cost.append(ep_cost)
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                    log[log_name].info("At iteration {}, cost: {}".format(
                        ep_count, ep_cost))
                    log[log_name].info("At iteration {}, return: {}".format(
                        ep_count, ep_ret))
                    tb_writer.add_scalar("objective", ep_ret, ep_count)
                    tb_writer.add_scalar("cost", ep_cost, ep_count)
                    ep_count += 1
                    if ep_count >= 200000:
                        import sys
                        sys.exit()
                o, ep_ret, ep_cost, ep_len = env.reset(), 0, 0, 0

        logging_ret = sum(logging_ret) / len(logging_ret)
        logging_cost = sum(logging_cost) / len(logging_cost)
        print(epoch, logging_ret, logging_cost)

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform PPO update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('ClipFrac', average_only=True)
        logger.log_tabular('StopIter', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
示例#6
0
    parser.add_argument("func",
                        choices=func_map.keys(),
                        help="functions. train/val/test")
    parser.add_argument("-f",
                        "--config",
                        type=str,
                        required=True,
                        help="configure file")
    parser.add_argument("-w",
                        "--weight",
                        type=str,
                        default=None,
                        help="weight for initialization or validate")
    parser.add_argument("-r",
                        "--result",
                        type=str,
                        default=None,
                        help="results for shows hard case")
    parser.add_argument("-l", "--outlog", type=str, help="output log file")
    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = get_command()
    utils.set_log(args.outlog)
    logging.info(args)
    cfgs = get_config(args)
    logging.info("Start %s the network" % args.func)
    func_map[args.func](cfgs)
示例#7
0
                        '-m',
                        type=str,
                        help="pretrained model",
                        default=None)

    config = parser.parse_args()

    # Constant values
    N_EPOCH = config.epoch
    N_ITER = config.iteration
    SEGLEN = 128

    # =============== Directories and data ===============
    # Make directories and create log file
    save_path = os.path.join(config.save_root, "vcc")
    logprint = utils.set_log(save_path, add=False)[1]

    # Set input directories and data paths
    if config.dataset == "vcc":
        data_root = "./data/vcc/"
    src_folders = sorted(os.listdir(data_root))
    data_paths = ["{}{}/cspec/".format(data_root, f) for f in src_folders]
    stat_paths = [
        "{}{}/train_cspecstat.npy".format(data_root, f) for f in src_folders
    ]
    label_paths = ["{}{}/label.npy".format(data_root, f) for f in src_folders]
    n_src = len(src_folders)

    src_data = [sorted(os.listdir(p)) for p in data_paths]
    n_src_data = [len(d) for d in src_data]
    src_batch_size = [math.floor(n) // N_ITER for n in n_src_data]