# initialize discriminator netD = GAN.Discriminator(args.nz, args.n_hidden) print("Discriminator loaded") # initialize generator netG = GAN.Generator(args.nz, args.n_hidden) print("Generator loaded") if torch.cuda.is_available(): netD.cuda() netG.cuda() print("Using GPU") # load data loader = utils.setup_data_loaders(args.batch_size, args.source_data_file, args.target_data_file) print('Data loaded') sys.stdout.flush() # setup optimizers G_opt = optim.Adam(list(netG.parameters()), lr=args.lrG) D_opt = optim.Adam(list(netD.parameters()), lr=args.lrD) # loss criteria logsigmoid = nn.LogSigmoid() mse = nn.MSELoss(reduce=False) LOG2 = Variable(torch.from_numpy(np.ones(1) * np.log(2)).float()) print(LOG2) if torch.cuda.is_available(): LOG2 = LOG2.cuda()
# initialize discriminator netD = GAN.Discriminator(args.nz, args.n_hidden) print("Discriminator loaded") # initialize generator netG = GAN.Generator(args.nz, args.n_hidden) netGS = GAN.Generator_Scale(args.nz, args.n_hidden) print("Generator loaded") if torch.cuda.is_available(): netD.cuda() netG.cuda() netGS.cuda() # load data loader = utils.setup_data_loaders(args.batch_size) print('Data loaded') sys.stdout.flush() # setup optimizers G_opt = optim.Adam(list(netG.parameters()), lr=args.lrG) D_opt = optim.Adam(list(netD.parameters()), lr=args.lrD) GS_opt = optim.Adam(list(netGS.parameters()), lr=args.lrG) # loss criteria logsigmoid = nn.LogSigmoid() mse = nn.MSELoss(reduce=False) LOG2 = Variable(torch.from_numpy(np.ones(1) * np.log(2)).float()) print(LOG2) if torch.cuda.is_available(): LOG2 = LOG2.cuda()
options.add_argument('-bs', action="store", dest="batch_size", default = 128, type = int) options.add_argument('-env', action="store", dest="env", default="VAE_MNIST_USPS") options.add_argument('-iter', action="store", dest="max_iter", default = 200, type = int) options.add_argument('-lr', action="store", dest="lr", default=1e-3, type = float) options.add_argument('-nz', action="store", dest="nz", default=20, type = int) options.add_argument('-lamb', action="store", dest="lamb", default=0.001, type = float) return options.parse_args() args = setup_args() print(args) sys.stdout.flush() # retrieve dataloaders train_loader, test_loader = utils.setup_data_loaders(args.batch_size) print('Data loaded') model = AENet.VAE(nc=1, latent_size=args.nz) if args.pretrained_file is not None: model.load_state_dict(torch.load(args.pretrained_file)) print("Pre-trained model loaded") sys.stdout.flush() if torch.cuda.is_available(): print('Using GPU') model.cuda() optimizer = optim.Adam([ {'params': model.parameters()}], lr = args.lr)