def data(): # maxlen = 100 # max_features = 20000 frame_number= 50 emotions = ['sad','ang', 'neu', 'exc'] print('Loading data...') X_train, y_train, weights = static_dataset('train','M',emotions,frame_number) X_test, y_test = static_dataset('test','M',emotions,frame_number) print(len(X_train), 'train sequences') print(len(X_test), 'test sequences') print("Pad sequences (samples x time)") # X_train = sequence.pad_sequences(X_train, maxlen=maxlen) # X_test = sequence.pad_sequences(X_test, maxlen=maxlen) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) return X_train, X_test, y_train, y_test, weights
bias = True drop_rate = 0.2 feature_number = 87 if feature_type == "LLF": feature_number = 31 normal_FFNN = FFNN(trainable=trainable, feature_number=feature_number, frame_number=frame_number, emotions=emotions, lr=0.0001) #MALE DATASET x_tr_m, y_tr_m, class_weight_dict_m = static_dataset(feature_type, 'train', 'M', emotions, frame_number) x_ts_m, y_ts_m, _ = static_dataset(feature_type, 'validation', 'M', emotions, frame_number) #FEMALE DATASET x_tr_f, y_tr_f, class_weight_dict_f = static_dataset(feature_type, 'train', 'F', emotions, frame_number) x_ts_f, y_ts_f, _ = static_dataset(feature_type, 'test', 'F', emotions, frame_number) #DATASET NORMALIZATION x_tr_m = numpy.array(x_tr_m) x_tr_m = tf.keras.utils.normalize(x_tr_m, axis=-1, order=2) y_tr_m = numpy.array(y_tr_m)
regu = 0.0000 bias = True drop_rate = 0.2 feature_number = 87 if feature_type == "LLF": feature_number = 31 model = FFNN(trainable=trainable, feature_number=feature_number, frame_number=frame_number, emotions=emotions, lr=0.0001) #FEMALE DATASET x, y, class_weight_dict = static_dataset(feature_type, 'train', 'F', emotions, frame_number) x_v, y_v, _ = static_dataset(feature_type, 'test', 'F', emotions, frame_number) #FEMALE DATASET print(len(x)) x = x[::4] y = y[::4] #DATASET NORMALIZATION x = numpy.array(x) x = tf.keras.utils.normalize(x, axis=-1, order=2) y = numpy.array(y) #cass_weight_dict = weight_class('train',emotions,'M')
#callback plot_losses = PlotLosses() earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001, patience=10, \ verbose=1, mode='auto') trainable = 'True' #emotions = ['ang','dis','exc','fea','fru','hap','neu','oth','sad','sur','xxx'] emotions = ['ang','exc','neu','sad'] size_batch2 = 8 frame_number = 1 x,y,class_weight_dict = static_dataset('train','M',emotions,frame_number) x_val,y_val,class_weight_dict_test = static_dataset('validation','M',emotions,frame_number) x_test,y_test,class_weight_dict_test = static_dataset('test','M',emotions,frame_number) x = tf.keras.utils.normalize(x, axis=-1, order=2) #search parameters for hyperparameter optimization #batch_sizes = [16, 32, 64, 128, 256] batch_sizes = [8] #epochs = [10, 50, 100] epochs = [300] #optimizers = [sgd, rmsdrop, adagrad, adadelta, adam, adamax, nadam] #learn_rates = [0.00001, 0.0001, 0.001, 0.01, 0.1, 0.2] #learn_rates = [0.0001,0.00005,0.00001,0.000005,0.000001] learn_rates = [0.01,0.005,0.001,0.0005,0.0001,0.00005,0.00001,0.000001,0.0000001]