def main(args): #network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = utils.get_dataset(args.data_dir) #train_set = facenet.dataset_from_list2(args.data_dir,'dataset/casia_maxpy_mtcnnpy_182',error_classes=[],drop_key='AsianStarCropBig_YES') nrof_classes = len(train_set) print('nrof_classes: ', nrof_classes) image_list, label_list = utils.get_image_paths_and_labels(train_set) image_list = np.array(image_list) label_list = np.array(label_list, dtype=np.int32) dataset_size = len(image_list) single_batch_size = args.people_per_batch * args.images_per_person indices = range(dataset_size) np.random.shuffle(indices) def _sample_people_softmax(x): global softmax_ind if softmax_ind >= dataset_size: np.random.shuffle(indices) softmax_ind = 0 true_num_batch = min(single_batch_size, dataset_size - softmax_ind) sample_paths = image_list[indices[softmax_ind:softmax_ind + true_num_batch]] sample_labels = label_list[indices[softmax_ind:softmax_ind + true_num_batch]] softmax_ind += true_num_batch return (np.array(sample_paths), np.array(sample_labels, dtype=np.int32)) def _sample_people(x): '''We sample people based on tf.data, where we can use transform and prefetch. ''' image_paths, num_per_class = sample_people( train_set, args.people_per_batch * (args.num_gpus - 1), args.images_per_person) labels = [] for i in range(len(num_per_class)): labels.extend([i] * num_per_class[i]) return (np.array(image_paths), np.array(labels, dtype=np.int32)) def _parse_function(filename, label): file_contents = tf.read_file(filename) image = tf.image.decode_image(file_contents, channels=3) #image = tf.image.decode_jpeg(file_contents, channels=3) print(image.shape) if args.random_crop: print('use random crop') image = tf.random_crop(image, [args.image_size, args.image_size, 3]) else: print('Not use random crop') #image.set_shape((args.image_size, args.image_size, 3)) image.set_shape((None, None, 3)) image = tf.image.resize_images(image, size=(args.image_height, args.image_width)) #print(image.shape) if args.random_flip: image = tf.image.random_flip_left_right(image) #pylint: disable=no-member #image.set_shape((args.image_size, args.image_size, 3)) image.set_shape((args.image_height, args.image_width, 3)) if debug: image = tf.cast(image, tf.float32) else: image = tf.image.per_image_standardization(image) return image, label #train_set = facenet.dataset_from_list(args.data_dir,'dataset/ms_mp',keys=['MultiPics']) #train_set = facenet.dataset_from_list(args.data_dir,'dataset/ms_mp') gpus = [0, 1] #gpus = [0] print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False, name='global_step') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') #the image is generated by sequence with tf.device("/cpu:0"): softmax_dataset = tf_data.Dataset.range(args.epoch_size * args.max_nrof_epochs * 100) softmax_dataset = softmax_dataset.map(lambda x: tf.py_func( _sample_people_softmax, [x], [tf.string, tf.int32])) softmax_dataset = softmax_dataset.flat_map(_from_tensor_slices) softmax_dataset = softmax_dataset.map(_parse_function, num_threads=8, output_buffer_size=2000) softmax_dataset = softmax_dataset.batch(args.num_gpus * single_batch_size) softmax_iterator = softmax_dataset.make_initializable_iterator() softmax_next_element = softmax_iterator.get_next() softmax_next_element[0].set_shape( (args.num_gpus * single_batch_size, args.image_height, args.image_width, 3)) softmax_next_element[1].set_shape(args.num_gpus * single_batch_size) batch_image_split = tf.split(softmax_next_element[0], args.num_gpus) batch_label_split = tf.split(softmax_next_element[1], args.num_gpus) learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) print('Using optimizer: {}'.format(args.optimizer)) if args.optimizer == 'ADAGRAD': opt = tf.train.AdagradOptimizer(learning_rate) elif args.optimizer == 'MOM': opt = tf.train.MomentumOptimizer(learning_rate, 0.9) tower_losses = [] tower_cross = [] tower_dist = [] tower_th = [] for i in range(args.num_gpus): with tf.device("/gpu:" + str(i)): with tf.name_scope("tower_" + str(i)) as scope: with slim.arg_scope([slim.model_variable, slim.variable], device="/cpu:0"): with tf.variable_scope( tf.get_variable_scope()) as var_scope: reuse = False if i == 0 else True #with slim.arg_scope(resnet_v2.resnet_arg_scope(args.weight_decay)): #prelogits, end_points = resnet_v2.resnet_v2_50(batch_image_split[i],is_training=True, # output_stride=16,num_classes=args.embedding_size,reuse=reuse) #prelogits, end_points = network.inference(batch_image_split[i], args.keep_probability, # phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, # weight_decay=args.weight_decay, reuse=reuse) if args.network == 'slim_sphere': prelogits = network.infer(batch_image_split[i]) elif args.network == 'densenet': with slim.arg_scope( densenet.densenet_arg_scope( args.weight_decay)): #prelogits, endpoints = densenet.densenet_small(batch_image_split[i],num_classes=args.embedding_size,is_training=True,reuse=reuse) prelogits, endpoints = densenet.densenet_small_middle( batch_image_split[i], num_classes=args.embedding_size, is_training=True, reuse=reuse) prelogits = tf.squeeze(prelogits, axis=[1, 2]) #prelogits = slim.batch_norm(prelogits, is_training=True, decay=0.997,epsilon=1e-5,scale=True,updates_collections=tf.GraphKeys.UPDATE_OPS,reuse=reuse,scope='softmax_bn') if args.loss_type == 'softmax': cross_entropy_mean = utils.softmax_loss( prelogits, batch_label_split[i], len(train_set), args.weight_decay, reuse) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) tower_cross.append(cross_entropy_mean) #loss = cross_entropy_mean + args.weight_decay*tf.add_n(regularization_losses) loss = cross_entropy_mean + tf.add_n( regularization_losses) tower_dist.append(0) tower_cross.append(cross_entropy_mean) tower_th.append(0) tower_losses.append(loss) elif args.loss_type == 'scatter' or args.loss_type == 'coco': label_reshape = tf.reshape( batch_label_split[i], [single_batch_size]) label_reshape = tf.cast( label_reshape, tf.int64) if args.loss_type == 'scatter': scatter_loss, _ = utils.weight_scatter_speed( prelogits, label_reshape, len(train_set), reuse, weight=args.weight, scale=args.scale) else: scatter_loss, _ = utils.coco_loss( prelogits, label_reshape, len(train_set), reuse, alpha=args.alpha, scale=args.scale) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) loss = scatter_loss[ 'loss_total'] + args.weight_decay * tf.add_n( regularization_losses) tower_dist.append(scatter_loss['loss_dist']) tower_cross.append(0) tower_th.append(scatter_loss['loss_th']) tower_losses.append(loss) #loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') tf.get_variable_scope().reuse_variables() total_loss = tf.reduce_mean(tower_losses) total_cross = tf.reduce_mean(tower_cross) total_dist = tf.reduce_mean(tower_dist) total_th = tf.reduce_mean(tower_th) losses = {} losses['total_loss'] = total_loss losses['total_cross'] = total_cross losses['total_dist'] = total_dist losses['total_th'] = total_th debug_info = {} debug_info['logits'] = prelogits #debug_info['end_points'] = end_points debug_info['batch_image_split'] = batch_image_split debug_info['batch_label_split'] = batch_label_split #debug_info['endpoints'] = endpoints grads = opt.compute_gradients(total_loss, tf.trainable_variables(), colocate_gradients_with_ops=True) apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_op = tf.group(apply_gradient_op) save_vars = [ var for var in tf.global_variables() if 'Adagrad' not in var.name and 'global_step' not in var.name ] check_nan = tf.add_check_numerics_ops() debug_info['check_nan'] = check_nan #saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) saver = tf.train.Saver(save_vars, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) #sess.run(iterator.initializer) sess.run(softmax_iterator.initializer) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): #pdb.set_trace() if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size if debug: debug_train(args, sess, train_set, epoch, image_batch_gather, enqueue_op, batch_size_placeholder, image_batch_split, image_paths_split, num_per_class_split, image_paths_placeholder, image_paths_split_placeholder, labels_placeholder, labels_batch, num_per_class_placeholder, num_per_class_split_placeholder, len(gpus)) # Train for one epoch train(args, sess, epoch, len(gpus), debug_info, learning_rate_placeholder, phase_train_placeholder, global_step, losses, train_op, summary_op, summary_writer, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) # Evaluate on LFW return model_dir
def main(args): #network = importlib.import_module(args.model_def) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = utils.get_dataset(args.data_dir) nrof_classes = len(train_set) print('nrof_classes: ', nrof_classes) image_list, label_list = utils.get_image_paths_and_labels(train_set) image_list = np.array(image_list) print('total images: {}'.format(len(image_list))) label_list = np.array(label_list, dtype=np.int32) dataset_size = len(image_list) data_reader = DataGenerator(image_list, label_list, args.batch_size) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False, name='global_step') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') images_placeholder = tf.placeholder(tf.float32, [None, 112, 96, 3], name='images_placeholder') labels_placeholder = tf.placeholder(tf.int32, [None], name='labels_placeholder') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) print('Using optimizer: {}'.format(args.optimizer)) if args.optimizer == 'ADAGRAD': opt = tf.train.AdagradOptimizer(learning_rate) elif args.optimizer == 'MOM': opt = tf.train.MomentumOptimizer(learning_rate, 0.9) if args.network == 'sphere_network': prelogits = network.infer(images_placeholder) else: raise Exception('Not supported network: {}'.format(args.loss_type)) if args.loss_type == 'softmax': cross_entropy_mean = utils.softmax_loss(prelogits, labels_placeholder, len(train_set), args.weight_decay, False) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) #loss = cross_entropy_mean + args.weight_decay*tf.add_n(regularization_losses) loss = cross_entropy_mean + args.weight_decay * tf.add_n( regularization_losses) #loss = cross_entropy_mean else: raise Exception('Not supported loss type: {}'.format( args.loss_type)) #loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') losses = {} losses['total_loss'] = loss losses['softmax_loss'] = cross_entropy_mean debug_info = {} debug_info['prelogits'] = prelogits grads = opt.compute_gradients(loss, tf.trainable_variables()) train_op = opt.apply_gradients(grads, global_step=global_step) #save_vars = [var for var in tf.global_variables() if 'Adagrad' not in var.name and 'global_step' not in var.name] save_vars = tf.global_variables() #saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3) saver = tf.train.Saver(save_vars, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) with sess.as_default(): #pdb.set_trace() if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size # Train for one epoch train(args, sess, epoch, images_placeholder, labels_placeholder, data_reader, debug, learning_rate_placeholder, global_step, losses, train_op, args.learning_rate_schedule_file) # Save variables and the metagraph if it doesn't exist already model_dir = args.models_base_dir checkpoint_path = os.path.join(model_dir, 'model-%s.ckpt' % 'softmax') saver.save(sess, checkpoint_path, global_step=step, write_meta_graph=False) # Evaluate on LFW return model_dir
def main(args): src_path, _ = os.path.split(os.path.realpath(__file__)) # Create result directory res_name = utils.gettime() res_dir = os.path.join(src_path, 'results', res_name) os.makedirs(res_dir, exist_ok=True) log_filename = os.path.join(res_dir, 'log.h5') model_filename = os.path.join(res_dir, res_name) # Store some git revision info in a text file in the log directory utils.store_revision_info(src_path, res_dir, ' '.join(sys.argv)) # Store parameters in an HDF5 file utils.store_hdf(os.path.join(res_dir, 'parameters.h5'), vars(args)) # Copy learning rate schedule file to result directory learning_rate_schedule = utils.copy_learning_rate_schedule_file( args.learning_rate_schedule, res_dir) with tf.Session() as sess: tf.set_random_seed(args.seed) np.random.seed(args.seed) filelist = ['train_%03d.pkl' % i for i in range(200)] dataset = create_dataset(filelist, args.data_dir, buffer_size=20000, batch_size=args.batch_size, total_seq_length=args.nrof_init_time_steps + args.seq_length) # Create an iterator over the dataset iterator = dataset.make_one_shot_iterator() obs, action = iterator.get_next() is_pdt_ph = tf.placeholder(tf.bool, [None, args.seq_length]) is_pdt = create_transition_type_matrix(args.batch_size, args.seq_length, args.training_scheme) with tf.variable_scope('env_model'): env_model = EnvModel(is_pdt_ph, obs, action, 1, model_type=args.model_type, nrof_time_steps=args.seq_length, nrof_free_nats=args.nrof_free_nats) reg_loss = tf.reduce_mean(env_model.regularization_loss) rec_loss = tf.reduce_mean(env_model.reconstruction_loss) loss = reg_loss + rec_loss global_step = tf.Variable(0, name='global_step', trainable=False) learning_rate_ph = tf.placeholder(tf.float32, ()) train_op = tf.train.AdamOptimizer(learning_rate_ph).minimize( loss, global_step=global_step) saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) stat = { 'loss': np.zeros((args.max_nrof_steps, ), np.float32), 'rec_loss': np.zeros((args.max_nrof_steps, ), np.float32), 'reg_loss': np.zeros((args.max_nrof_steps, ), np.float32), 'learning_rate': np.zeros((args.max_nrof_steps, ), np.float32), } try: print('Started training') rec_loss_tot, reg_loss_tot, loss_tot = (0.0, 0.0, 0.0) lr = None t = time.time() for i in range(1, args.max_nrof_steps + 1): if not lr or i % 100 == 0: lr = utils.get_learning_rate_from_file( learning_rate_schedule, i) if lr < 0: break stat['learning_rate'][i - 1] = lr _, rec_loss_, reg_loss_, loss_ = sess.run( [train_op, rec_loss, reg_loss, loss], feed_dict={ is_pdt_ph: is_pdt, learning_rate_ph: lr }) stat['loss'][i - 1], stat['rec_loss'][i - 1], stat['reg_loss'][ i - 1] = loss_, rec_loss_, reg_loss_ rec_loss_tot += rec_loss_ reg_loss_tot += reg_loss_ loss_tot += loss_ if i % 10 == 0: print( 'step: %-5d time: %-12.3f lr: %-12.6f rec_loss: %-12.1f reg_loss: %-12.1f loss: %-12.1f' % (i, time.time() - t, lr, rec_loss_tot / 10, reg_loss_tot / 10, loss_tot / 10)) rec_loss_tot, reg_loss_tot, loss_tot = (0.0, 0.0, 0.0) t = time.time() if i % 5000 == 0 and i > 0: saver.save(sess, model_filename, i) if i % 100 == 0: utils.store_hdf(log_filename, stat) except tf.errors.OutOfRangeError: pass print("Saving model...") saver.save(sess, model_filename, i) print('Done!')
def main(args): network = importlib.import_module(args.model_def) image_size = (args.image_size, args.image_size) subdir = datetime.strftime(datetime.now(), '%Y%m%d') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir(log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir(model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) stat_file_name = os.path.join(log_dir, 'stat.h5') # Write arguments to a text file utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) random.seed(args.seed) dataset = utils.get_dataset(args.data_dir) # print(dataset[1].image_paths) if args.filter_filename: dataset = filter_dataset(dataset, os.path.expanduser(args.filter_filename), args.filter_percentile, args.filter_min_nrof_images_per_class) if args.validation_set_split_ratio > 0.0: train_set, val_set = utils.split_dataset(dataset, args.validation_set_split_ratio, args.min_nrof_val_images_per_class, 'SPLIT_IMAGES') else: train_set, val_set = dataset, [] nrof_classes = len(train_set) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) pretrained_model = None if args.pretrained_model: pretrained_model = os.path.expanduser(args.pretrained_model) print('Pre-trained model: %s' % pretrained_model) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False, name='global_step') # Get a list of image paths and their labels image_list, label_list = utils.get_image_paths_and_labels(train_set) assert len(image_list) > 0, 'The training set should not be empty' val_image_list, val_label_list = utils.get_image_paths_and_labels(val_set) learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') image_paths_placeholder = tf.placeholder(tf.string, shape=(None, 1), name='image_paths') labels_placeholder = tf.placeholder(tf.int32, shape=(None, 1), name='labels') control_placeholder = tf.placeholder(tf.int32, shape=(None, 1), name='control') image_batch_plh = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='image_batch_p') label_batch_plh = tf.placeholder(tf.int32, name='label_batch_p') print('Number of classes in training set: %d' % nrof_classes) print('Number of examples in training set: %d' % len(image_list)) print('Number of classes in validation set: %d' % len(val_set)) print('Number of examples in validation set: %d' % len(val_image_list)) print('Building training graph') # Build the inference graph # prelogits, _ = efficientnet_builder.build_model_base(image_batch_plh, 'efficientnet-b2', training=True) prelogits, _ = network.inference(image_batch_plh, args.keep_probability, image_size, phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, weight_decay=args.weight_decay) logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, weights_initializer=slim.initializers.xavier_initializer(), weights_regularizer=slim.l2_regularizer(args.weight_decay), scope='Logits', reuse=False) embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings') # Norm for the prelogits eps = 1e-4 prelogits_norm = tf.reduce_mean(tf.norm(tf.abs(prelogits) + eps, ord=args.prelogits_norm_p, axis=1)) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_norm * args.prelogits_norm_loss_factor) # Add center loss prelogits_center_loss, _ = utils.center_loss(prelogits, label_batch_plh, args.center_loss_alfa, nrof_classes) tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor) learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) # Calculate the average cross entropy loss across the batch cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=label_batch_plh, logits=logits, name='cross_entropy_per_example') cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) correct_prediction = tf.cast(tf.equal(tf.argmax(logits, 1), tf.cast(label_batch_plh, tf.int64)), tf.float32) accuracy = tf.reduce_mean(correct_prediction, name='accuracy') # Calculate the total losses regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss') # Separate facenet variables from smaug's ones facenet_global_vars = tf.global_variables() # Build a Graph that trains the model with one batch of examples and updates the model parameters train_op = utils.train(total_loss, global_step, args.optimizer, learning_rate, args.moving_average_decay, facenet_global_vars, args.log_histograms) # Create a saver facenet_saver_vars = tf.trainable_variables() facenet_saver_vars.append(global_step) saver = tf.train.Saver(facenet_saver_vars, max_to_keep=10) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Create session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) # Create normal pipeline dataset_train = LabeledImageData(image_list, label_list, sess, batch_size=args.batch_size, shuffle=True, use_flip=True, use_black_patches=True, use_crop=True) dataset_val = LabeledImageDataRaw(val_image_list, val_label_list, sess, batch_size=args.val_batch_size, shuffle=False) # Start running operations on the Graph. Change to tf.compat in newer versions of tf. sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) with sess.as_default(): if pretrained_model: print('Restoring pretrained model: %s' % pretrained_model) ckpt_dir_or_file = tf.train.latest_checkpoint(pretrained_model) saver.restore(sess, ckpt_dir_or_file) # Training and validation loop print('Running training') nrof_steps = args.max_nrof_epochs * args.epoch_size nrof_val_samples = int(math.ceil( args.max_nrof_epochs / args.validate_every_n_epochs)) # Validate every validate_every_n_epochs as well as in the last epoch stat = { 'loss': np.zeros((nrof_steps,), np.float32), 'center_loss': np.zeros((nrof_steps,), np.float32), 'reg_loss': np.zeros((nrof_steps,), np.float32), 'xent_loss': np.zeros((nrof_steps,), np.float32), 'prelogits_norm': np.zeros((nrof_steps,), np.float32), 'accuracy': np.zeros((nrof_steps,), np.float32), 'val_loss': np.zeros((nrof_val_samples,), np.float32), 'val_xent_loss': np.zeros((nrof_val_samples,), np.float32), 'val_accuracy': np.zeros((nrof_val_samples,), np.float32), 'lfw_accuracy': np.zeros((args.max_nrof_epochs,), np.float32), 'lfw_valrate': np.zeros((args.max_nrof_epochs,), np.float32), 'learning_rate': np.zeros((args.max_nrof_epochs,), np.float32), 'time_train': np.zeros((args.max_nrof_epochs,), np.float32), 'time_validate': np.zeros((args.max_nrof_epochs,), np.float32), 'time_evaluate': np.zeros((args.max_nrof_epochs,), np.float32), 'prelogits_hist': np.zeros((args.max_nrof_epochs, 1000), np.float32), 'smaug_alpha_loss': np.zeros((nrof_steps,), np.float32), 'smaug_total_loss': np.zeros((nrof_steps,), np.float32) } global_step_ = sess.run(global_step) start_epoch = 1 + global_step_ // args.epoch_size batch_number = global_step_ % args.epoch_size biggest_acc = 0.0 for epoch in range(start_epoch, args.max_nrof_epochs + 1): step = sess.run(global_step, feed_dict=None) # Train for one epoch t = time.time() cont = train(args, sess, epoch, batch_number, learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, image_batch_plh, label_batch_plh, global_step, total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file, stat, cross_entropy_mean, accuracy, learning_rate, prelogits, prelogits_center_loss, prelogits_norm, args.prelogits_hist_max, dataset_train, ) stat['time_train'][epoch - 1] = time.time() - t print("------------------Accuracy-----------------" + str(stat['val_accuracy'])) if not cont: break t = time.time() if len(val_image_list) > 0 and ((epoch - 1) % args.validate_every_n_epochs == args.validate_every_n_epochs - 1 or epoch == args.max_nrof_epochs): validate(args, sess, epoch, val_label_list, phase_train_placeholder, batch_size_placeholder, stat, total_loss, cross_entropy_mean, accuracy, args.validate_every_n_epochs, image_batch_plh, label_batch_plh, dataset_val) stat['time_validate'][epoch - 1] = time.time() - t cur_val_acc = get_val_acc(epoch, stat, args.validate_every_n_epochs) # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, epoch, args.save_every, cur_val_acc, biggest_acc, args.save_best) biggest_acc = update_biggest_acc(biggest_acc, cur_val_acc) print('Saving statistics') with h5py.File(stat_file_name, 'w') as f: for key, value in stat.items(): f.create_dataset(key, data=value) return model_dir
def main(args): src_path,_ = os.path.split(os.path.realpath(__file__)) subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') res_dir = os.path.join(os.path.expanduser(args.output_base_dir), subdir) if not os.path.isdir(res_dir): # Create the log directory if it doesn't exist os.makedirs(res_dir) # Store some git revision info in a text file in the log directory utils.store_revision_info(src_path, res_dir, ' '.join(sys.argv)) # Store parameters in an HDF5 file utils.store_hdf(os.path.join(res_dir, 'parameters.h5'), vars(args)) # Create statistics object stat_filename = os.path.join(res_dir, 'stat.h5') stat = utils.Stat(stat_filename) with tf.Graph().as_default(): tf.compat.v1.random.set_random_seed(args.seed) np.random.seed(args.seed) ########################################### """ Load Data """ ########################################### (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() nrof_train_batches = int(np.ceil(x_train.shape[0] / args.batch_size)) nrof_test_batches = int(np.ceil(x_test.shape[0] / args.batch_size)) input_dims = (x_train.shape[1], x_train.shape[2], 1) train_iterator = create_dataset(x_train, y_train, args.batch_size) test_iterator = create_dataset(x_test, y_test, args.batch_size) xtrain, ytrain = train_iterator.get_next() #@UnusedVariable xtest, ytest = test_iterator.get_next() #@UnusedVariable ########################################### """ Build Model Graphs """ ########################################### with tf.compat.v1.variable_scope("vae"): warmup_temp = tf.compat.v1.placeholder(tf.float32, shape=(), name="warmup_temp") if args.model_type=='VAE': m = VAE(input_dims, args.learning_rate, warmup_temp, to_list(args.nrof_stochastic_units), to_list(args.nrof_mlp_units)) elif args.model_type=='LVAE': m = LVAE(input_dims, args.learning_rate, warmup_temp, to_list(args.nrof_stochastic_units), to_list(args.nrof_mlp_units)) else: raise ValueError('Invalid model type') print('Building train graph...') train_op, train_o, train_dbg = m.build_graph(xtrain, is_training=True) print('Building evaluation graph...') _, eval_o, eval_dbg = m.build_graph(xtest, is_training=False) #@UnusedVariable init_op = tf.compat.v1.global_variables_initializer() sess = tf.compat.v1.InteractiveSession() sess.run(init_op) sess.run(train_iterator.initializer) sess.run(test_iterator.initializer) print('... start training') for epoch in range(1, args.nrof_epochs+1): # Get warm-up temperature temp = get_warmup_temp(epoch, args.nrof_warmup_epochs) o_list = [] start_time = time.time() for _ in range(nrof_train_batches): feed_dict = {warmup_temp: temp} o, dbg, _ = sess.run([train_o, train_dbg, train_op], feed_dict=feed_dict) #@UnusedVariable o_list += [ flatten(o) ] o_mean = mean(o_list) stat.add(add_prefix('train_', o_mean)) #if is_nan_or_inf(dbg.values()) or is_nan_or_inf(o.values()): # xxx = 1 #@UnusedVariable print(' epoch: %5d time: %6.3f temp: %10.3f elbo: %10.3f log p(x): %10.3f log p(z): %8.3f | %8.3f log q(z): %8.3f | %8.3f KL(q(z|x)||p(z)): %8.3f | %8.3f' % \ (epoch, time.time()-start_time, temp, o_mean['elbo'], o_mean['log_px'], o_mean['log_pz_0'], o_mean['log_pz_1'], o_mean['log_qz_0'], o_mean['log_qz_1'], o_mean['kl_0'], o_mean['kl_1'] )) # Evaluate every n epochs if epoch % args.eval_every_n_epochs == 0: o_list = [] start_time = time.time() for _ in range(nrof_test_batches): feed_dict = {warmup_temp: 1.0} o, dbg = sess.run([eval_o, eval_dbg], feed_dict=feed_dict) #@UnusedVariable o_list += [ flatten(o) ] o_mean = mean(o_list) stat.add(add_prefix('eval_', o_mean)) if args.display_eval: print('*epoch: %5d time: %6.3f temp: %10.3f elbo: %10.3f log p(x): %10.3f log p(z): %8.3f | %8.3f log q(z): %8.3f | %8.3f KL(q(z|x)||p(z)): %8.3f | %8.3f' % \ (epoch, time.time()-start_time, 1.0, o_mean['elbo'], o_mean['log_px'], o_mean['log_pz_0'], o_mean['log_pz_1'], o_mean['log_qz_0'], o_mean['log_qz_1'], o_mean['kl_0'], o_mean['kl_1'] )) # Store statistics stat.store()
def main_train(args): subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S') log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir) if not os.path.isdir( log_dir): # Create the log directory if it doesn't exist os.makedirs(log_dir) model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir) if not os.path.isdir( model_dir): # Create the model directory if it doesn't exist os.makedirs(model_dir) # Write arguments to a text file utils.write_arguments_to_file(args, os.path.join(log_dir, 'arguments.txt')) # Store some git revision info in a text file in the log directory src_path, _ = os.path.split(os.path.realpath(__file__)) utils.store_revision_info(src_path, log_dir, ' '.join(sys.argv)) np.random.seed(seed=args.seed) train_set = utils.dataset_from_list( args.train_data_dir, args.train_list_dir) # class objects in a list #----------------------class definition------------------------------------- ''' class ImageClass(): "Stores the paths to images for a given class" def __init__(self, name, image_paths): self.name = name self.image_paths = image_paths def __str__(self): return self.name + ', ' + str(len(self.image_paths)) + ' images' def __len__(self): return len(self.image_paths) ''' nrof_classes = len(train_set) print('nrof_classes: ', nrof_classes) image_list, label_list = utils.get_image_paths_and_labels(train_set) print('total images: ', len(image_list)) # label is in the form scalar. image_list = np.array(image_list) label_list = np.array(label_list, dtype=np.int32) dataset_size = len(image_list) single_batch_size = args.class_per_batch * args.images_per_class indices = list(range(dataset_size)) np.random.shuffle(indices) def _sample_people_softmax(x): # loading the images in batches. global softmax_ind if softmax_ind >= dataset_size: np.random.shuffle(indices) softmax_ind = 0 true_num_batch = min(single_batch_size, dataset_size - softmax_ind) sample_paths = image_list[indices[softmax_ind:softmax_ind + true_num_batch]] sample_images = [] for item in sample_paths: sample_images.append(np.load(str(item))) #print(item) #print(type(sample_paths[0])) sample_labels = label_list[indices[softmax_ind:softmax_ind + true_num_batch]] softmax_ind += true_num_batch return (np.expand_dims(np.array(sample_images, dtype=np.float32), axis=4), np.array(sample_labels, dtype=np.int32)) print('Model directory: %s' % model_dir) print('Log directory: %s' % log_dir) if args.pretrained_model: print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model)) with tf.Graph().as_default(): tf.set_random_seed(args.seed) global_step = tf.Variable(0, trainable=False, name='global_step') # Placeholder for the learning rate learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') #the image is generated by sequence with tf.device("/cpu:0"): softmax_dataset = tf.data.Dataset.range(args.epoch_size * args.max_nrof_epochs) softmax_dataset = softmax_dataset.map(lambda x: tf.py_func( _sample_people_softmax, [x], [tf.float32, tf.int32])) softmax_dataset = softmax_dataset.flat_map(_from_tensor_slices) softmax_dataset = softmax_dataset.batch(single_batch_size) softmax_iterator = softmax_dataset.make_initializable_iterator() softmax_next_element = softmax_iterator.get_next() softmax_next_element[0].set_shape( (single_batch_size, args.image_height, args.image_width, args.image_width, 1)) softmax_next_element[1].set_shape(single_batch_size) batch_image_split = softmax_next_element[0] # batch_image_split = tf.expand_dims(batch_image_split, axis = 4) batch_label_split = softmax_next_element[1] learning_rate = tf.train.exponential_decay( learning_rate_placeholder, global_step, args.learning_rate_decay_epochs * args.epoch_size, args.learning_rate_decay_factor, staircase=True) tf.summary.scalar('learning_rate', learning_rate) print('Using optimizer: {}'.format(args.optimizer)) if args.optimizer == 'ADAGRAD': opt = tf.train.AdagradOptimizer(learning_rate) elif args.optimizer == 'SGD': opt = tf.train.GradientDescentOptimizer(learning_rate) elif args.optimizer == 'MOM': opt = tf.train.MomentumOptimizer(learning_rate, 0.9) elif args.optimizer == 'ADAM': opt = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.999, epsilon=0.1) else: raise Exception("Not supported optimizer: {}".format( args.optimizer)) losses = {} with slim.arg_scope([slim.model_variable, slim.variable], device="/cpu:0"): with tf.variable_scope(tf.get_variable_scope()) as var_scope: reuse = False if args.network == 'sphere_network': prelogits = network.infer(batch_image_split, args.embedding_size) else: raise Exception("Not supported network: {}".format( args.network)) if args.fc_bn: prelogits = slim.batch_norm(prelogits, is_training=True, decay=0.997,epsilon=1e-5,scale=True,\ updates_collections=tf.GraphKeys.UPDATE_OPS,reuse=reuse,scope='softmax_bn') if args.loss_type == 'softmax': cross_entropy_mean = utils.softmax_loss( prelogits, batch_label_split, len(train_set), 1.0, reuse) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) loss = cross_entropy_mean + args.weight_decay * tf.add_n( regularization_losses) print('************************' + ' Computing the softmax loss') losses['total_loss'] = cross_entropy_mean losses['total_reg'] = args.weight_decay * tf.add_n( regularization_losses) elif args.loss_type == 'lmcl': label_reshape = tf.reshape(batch_label_split, [single_batch_size]) label_reshape = tf.cast(label_reshape, tf.int64) coco_loss = utils.cos_loss(prelogits, label_reshape, len(train_set), reuse, alpha=args.alpha, scale=args.scale) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) loss = coco_loss + args.weight_decay * tf.add_n( regularization_losses) print('************************' + ' Computing the lmcl loss') losses['total_loss'] = coco_loss losses['total_reg'] = args.weight_decay * tf.add_n( regularization_losses) elif args.loss_type == 'center': # center loss center_loss, centers, centers_update_op = get_center_loss(prelogits, label_reshape, args.center_loss_alfa, \ args.num_class_train) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) loss = center_loss + args.weight_decay * tf.add_n( regularization_losses) print('************************' + ' Computing the center loss') losses['total_loss'] = center_loss losses['total_reg'] = args.weight_decay * tf.add_n( regularization_losses) elif args.loss_type == 'lmccl': cross_entropy_mean = utils.softmax_loss( prelogits, batch_label_split, len(train_set), 1.0, reuse) label_reshape = tf.reshape(batch_label_split, [single_batch_size]) label_reshape = tf.cast(label_reshape, tf.int64) coco_loss = utils.cos_loss(prelogits, label_reshape, len(train_set), reuse, alpha=args.alpha, scale=args.scale) center_loss, centers, centers_update_op = get_center_loss(prelogits, label_reshape, args.center_loss_alfa, \ args.num_class_train) regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) reg_loss = args.weight_decay * tf.add_n( regularization_losses) loss = coco_loss + reg_loss + args.center_weighting * center_loss + cross_entropy_mean losses[ 'total_loss_center'] = args.center_weighting * center_loss losses['total_loss_lmcl'] = coco_loss losses['total_loss_softmax'] = cross_entropy_mean losses['total_reg'] = reg_loss grads = opt.compute_gradients(loss, tf.trainable_variables(), colocate_gradients_with_ops=True) apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # used for updating the centers in the center loss. if args.loss_type == 'lmccl' or args.loss_type == 'center': with tf.control_dependencies([centers_update_op]): with tf.control_dependencies(update_ops): train_op = tf.group(apply_gradient_op) else: with tf.control_dependencies(update_ops): train_op = tf.group(apply_gradient_op) save_vars = [ var for var in tf.global_variables() if 'Adagrad' not in var.name and 'global_step' not in var.name ] saver = tf.train.Saver(save_vars, max_to_keep=3) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() # Start running operations on the Graph. gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True)) # Initialize variables sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder: True}) sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder: True}) #sess.run(iterator.initializer) sess.run(softmax_iterator.initializer) summary_writer = tf.summary.FileWriter(log_dir, sess.graph) coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) with sess.as_default(): if args.pretrained_model: print('Restoring pretrained model: %s' % args.pretrained_model) saver.restore(sess, os.path.expanduser(args.pretrained_model)) # Training and validation loop epoch = 0 while epoch < args.max_nrof_epochs: step = sess.run(global_step, feed_dict=None) epoch = step // args.epoch_size if debug: debug_train(args, sess, train_set, epoch, image_batch_gather,\ enqueue_op,batch_size_placeholder, image_batch_split,image_paths_split,num_per_class_split, image_paths_placeholder,image_paths_split_placeholder, labels_placeholder, labels_batch,\ num_per_class_placeholder,num_per_class_split_placeholder,len(gpus)) # Train for one epoch if args.loss_type == 'lmccl' or args.loss_type == 'center': train_contain_center(args, sess, epoch, learning_rate_placeholder, phase_train_placeholder, global_step, losses, train_op, summary_op, summary_writer, '', centers_update_op) else: train(args, sess, epoch, learning_rate_placeholder, phase_train_placeholder, global_step, losses, train_op, summary_op, summary_writer, '') # Save variables and the metagraph if it doesn't exist already save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step) return model_dir