from __future__ import absolute_import, division, print_function import os import sys sys.path.append(os.path.join('.', '..')) import utils import tensorflow as tf import numpy as np #(embedding_train,embedding_labels_train) = utils.read_tfrecords_train('tfRecords10procent/train.tfrecords') #(embedding_val,embedding_labels_val) = utils.read_tfrecords_val('tfRecords10procent/val.tfrecords') (e1_train, l1_train) = utils.tfRead('train1') print("tfRecord train1 uploaded!") (e2_train, l2_train) = utils.tfRead('train2') print("tfRecord train2 uploaded!") (e3_train, l3_train) = utils.tfRead('train3') print("tfRecord train3 uploaded!") (e4_train, l4_train) = utils.tfRead('train4') print("tfRecord train4 uploaded!") (e5_train, l5_train) = utils.tfRead('train5') print("tfRecord train5 uploaded!") (e6_train, l6_train) = utils.tfRead('train6') print("tfRecord train6 uploaded!") embedding_train = np.concatenate( (e1_train, e2_train, e3_train, e4_train, e5_train, e6_train), axis=0) print("Train embedding shape: ", embedding_train.shape) embedding_labels_train = np.concatenate( (l1_train, l2_train, l3_train, l4_train, l5_train, l6_train), axis=0) print(embedding_labels_train.shape)
from __future__ import absolute_import, division, print_function import os import sys sys.path.append(os.path.join('.', '..')) import utils import tensorflow as tf import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import confusion_matrix (embedding_test, embedding_labels_test) = utils.tfRead('test') print("tfRecord test2 uploaded!") #embedding_labels_test = utils.labelMinimizer(embedding_labels_test) embedding_list = embedding_test gpu_opts = tf.GPUOptions(per_process_gpu_memory_fraction=0.2) # load the trained network from a local drive with tf.Session(config=tf.ConfigProto(gpu_options=gpu_opts)) as sess: #First let's load meta graph and restore weights saver = tf.train.import_meta_graph("C:/tmp/audio_classifier.meta") saver.restore(sess, tf.train.latest_checkpoint('C:/tmp/')) # Now, let's access and create placeholders variables and # create feed-dict to feed new data graph = tf.get_default_graph() x_pl = graph.get_tensor_by_name("xPlaceholder:0") feed_dict = {x_pl: embedding_list}
from __future__ import absolute_import, division, print_function import os import sys sys.path.append(os.path.join('.', '..')) import utils import tensorflow as tf import numpy as np (e1_test, l1_test) = utils.tfRead('test1') print("tfRecord test1 uploaded!") (e2_test, l2_test) = utils.tfRead('test2') print("tfRecord test2 uploaded!") embedding_test = np.concatenate((e1_test, e2_test), axis=0) print("Train embedding shape: ", embedding_test.shape) embedding_labels_test = np.concatenate((l1_test, l2_test), axis=0) print(embedding_labels_test.shape) print(embedding_labels_test[195]) embedding_labels_test = utils.labelMinimizer(embedding_labels_test) embedding_labels_test = utils.OnehotEnc(embedding_labels_test) #print(embedding_test[1]) print(embedding_labels_test[195]) embedding_list = [embedding_test[195]] gpu_opts = tf.GPUOptions(per_process_gpu_memory_fraction=0.2) # load the trained network from a local drive