val_pos_memmap = memmap("../data/%s_val_pos.memmap" % memmap_name, dtype=np.float32, mode="r", shape=memmap_properties["val_pos_shape"]) val_neg_memmap = memmap("../data/%s_val_neg.memmap" % memmap_name, dtype=np.float32, mode="r", shape=memmap_properties["val_neg_shape"]) all_training_losses = [] all_validation_losses = [] all_validation_accuracies = [] all_training_accs = [] n_epochs = 20 for epoch in range(n_epochs): print "epoch: ", epoch train_loss = 0 train_acc_tmp = 0 train_loss_tmp = 0 batch_ctr = 0 for data, seg, labels in threaded_generator(memmapGeneratorDataAugm(train_neg_memmap, train_pos_memmap, BATCH_SIZE, n_pos_train, n_neg_train)): if batch_ctr != 0 and batch_ctr % int(np.floor(n_batches_per_epoch/10.)) == 0: print "number of batches: ", batch_ctr, "/", n_batches_per_epoch print "training_loss since last update: ", train_loss_tmp/np.floor(n_batches_per_epoch/10.), " train accuracy: ", train_acc_tmp/np.floor(n_batches_per_epoch/10.) all_training_losses.append(train_loss_tmp/np.floor(n_batches_per_epoch/10.)) all_training_accs.append(train_acc_tmp/np.floor(n_batches_per_epoch/10.)) train_loss_tmp = 0 train_acc_tmp = 0 printLosses(all_training_losses, all_training_accs, all_validation_losses, all_validation_accuracies, "../results/%s.png" % EXPERIMENT_NAME, 10) loss, acc = train_fn(data, labels) train_loss += loss train_loss_tmp += loss train_acc_tmp += acc batch_ctr += 1 if batch_ctr > n_batches_per_epoch: break
val_pos_memmap = memmap("../data/patchClassification_val_pos.memmap", dtype=np.float32, mode="r+", shape=memmap_properties["val_pos_shape"]) val_neg_memmap = memmap("../data/patchClassification_val_neg.memmap", dtype=np.float32, mode="r+", shape=memmap_properties["val_neg_shape"]) all_training_losses = [] all_validation_losses = [] all_validation_accuracies = [] all_training_accs = [] n_epochs = 20 for epoch in range(n_epochs): print "epoch: ", epoch train_loss = 0 train_acc_tmp = 0 train_loss_tmp = 0 batch_ctr = 0 for data, seg, labels in threaded_generator(memmapGeneratorDataAugm(train_neg_memmap, train_pos_memmap, BATCH_SIZE, n_pos_train, n_neg_train)): if batch_ctr != 0 and batch_ctr % int(np.floor(n_batches_per_epoch/10.)) == 0: print "number of batches: ", batch_ctr, "/", n_batches_per_epoch print "training_loss since last update: ", train_loss_tmp/np.floor(n_batches_per_epoch/10.), " train accuracy: ", train_acc_tmp/np.floor(n_batches_per_epoch/10.) all_training_losses.append(train_loss_tmp/np.floor(n_batches_per_epoch/10.)) all_training_accs.append(train_acc_tmp/np.floor(n_batches_per_epoch/10.)) train_loss_tmp = 0 train_acc_tmp = 0 printLosses(all_training_losses, all_training_accs, all_validation_losses, all_validation_accuracies, "../results/%s.png" % EXPERIMENT_NAME, 10) loss, acc = train_fn(data, labels) train_loss += loss train_loss_tmp += loss train_acc_tmp += acc batch_ctr += 1 if batch_ctr > n_batches_per_epoch: break
shape=memmap_properties["val_neg_shape"]) all_training_losses = [] all_validation_losses = [] all_validation_accuracies = [] all_training_accs = [] n_epochs = 100 for epoch in range(n_epochs): print "epoch: ", epoch train_loss = 0 train_acc_tmp = 0 train_loss_tmp = 0 batch_ctr = 0 for data, seg, labels in threaded_generator( memmapGeneratorDataAugm_t1km_flair_adc_cbv(train_pos_memmap, train_neg_memmap, BATCH_SIZE, n_pos_train, n_pos_train)): if batch_ctr != 0 and batch_ctr % int( np.floor(n_batches_per_epoch / 10.)) == 0: print "number of batches: ", batch_ctr, "/", n_batches_per_epoch print "training_loss since last update: ", train_loss_tmp / np.floor( n_batches_per_epoch / 10.), " train accuracy: ", train_acc_tmp / np.floor( n_batches_per_epoch / 10.) all_training_losses.append(train_loss_tmp / np.floor(n_batches_per_epoch / 10.)) all_training_accs.append(train_acc_tmp / np.floor(n_batches_per_epoch / 10.)) train_loss_tmp = 0 train_acc_tmp = 0