def main():
    net = get_net()
    net_str = '%s'%net
    logging.info(net_str)
    if pretrained is not None and pretrained != "":
        net.load_params(pretrained,ctx=utils.try_gpu())
        logging.info("load model:%s"%pretrained)
    trainIter, testIter = get_train_test()
    trainer,lossfunc = get_trainer(net)
    lr_steps = [6000,12000,18000,24000]
    utils.train(trainIter, testIter, net,lossfunc, trainer, utils.try_gpu(), 100000,lr_steps,print_batches=10, cpdir='models')
示例#2
0
def main():
    
    net = get_net()
    net_str = '%s'%net
    logging.info('ok')
    logging.info(net_str)
    if pretrained is not None:
        net.load_params(pretrained,ctx=utils.try_gpu())
    trainIter, testIter = get_train_test()
    trainer,loss = get_trainer(net)
    utils.train(trainIter, testIter, net, loss, trainer, utils.try_gpu(), 1000,print_batches=100, cpdir='cp')
示例#3
0
文件: demo.py 项目: zfxu/tests
def main():
    
    net = get_net()
    net_str = '%s'%net
    #logging.info('ok')
    logging.info(net_str)
    if pretrained is not None:
        net.load_params(pretrained,ctx=utils.try_gpu())
    train_data, test_data = get_train_test()
    trainer,loss = get_trainer(net)
    utils.train(train_data, test_data, trainBatchSize,\
        net, loss, trainer, utils.try_gpu(), 1000,\
        500,0.1,print_batches=100, chk_pts_dir=checkpoints)
示例#4
0
def main():

    num_outputs = 10
    architecture = ((2, 64), (2, 128), (4, 256), (4, 512), (4, 512))

    net = nn.Sequential()
    with net.name_scope():
        net.add(
            vgg_stack(architecture),
            nn.Flatten(),
            nn.Dense(4096, activation="relu"),
            nn.Dropout(.5),
            nn.Dense(4096, activation="relu"),
            nn.Dropout(.5),
            nn.Dense(num_outputs))

    train_data, test_data = utils.load_data_fashion_mnist(
        batch_size=64, resize=96)

    ctx = utils.try_gpu()

    net.initialize(ctx=ctx, init=init.Xavier())

    loss = gluon.loss.SoftmaxCrossEntropyLoss()

    trainer = gluon.Trainer(net.collect_params(), 'sgd', {
                            'learning_rate': 0.05})
    utils.train(train_data, test_data, net, loss, trainer, ctx, num_epochs=100)
示例#5
0
    def __init__(self,
                 input_dim,
                 hidden_dim,
                 mask_dim,
                 delta_dim,
                 x_mean=None):
        super(GRUDCell, self).__init__()

        self.device = utils.try_gpu()
        self.hidden_dim = hidden_dim

        # Set empirical mean if first GRU-D layer. Subsequent stacked layers don't need the mean.
        if x_mean is not None:
            self.x_mean = x_mean
            self.first_layer = True
        else:
            self.first_layer = False

        self.R_lin = nn.Linear(input_dim + hidden_dim + mask_dim,
                               hidden_dim)  # RESET
        self.Z_lin = nn.Linear(input_dim + hidden_dim + mask_dim,
                               hidden_dim)  # UPDATE
        self.tilde_lin = nn.Linear(input_dim + hidden_dim + mask_dim,
                                   hidden_dim)  # CANDIDATE STATE
        self.gamma_h_lin = nn.Linear(
            delta_dim, hidden_dim)  # HIDDEN STATE DECAY PARAMETERS
        if self.first_layer:
            self.gamma_x_lin = nn.Linear(delta_dim,
                                         delta_dim)  # INPUT DECAY PARAMETERS

        # XAVIER INIT FOR FASTER CONVERGENCE
        nn.init.xavier_normal_(self.R_lin.weight)
        nn.init.xavier_normal_(self.Z_lin.weight)
        nn.init.xavier_normal_(self.tilde_lin.weight)
示例#6
0
文件: main.py 项目: ezliu/SlimeAI
def purge_round():
    candidate_leaders_map = {}  # {filename --> agent}

    # Load in all of the leaders
    for leader_checkpoint in os.listdir(LEADER_DIR):
        path = os.path.join(LEADER_DIR, leader_checkpoint)
        candidate_leader = try_gpu(
            DQNAgent(6,
                     LinearSchedule(0.05, 0.05, 1),
                     OBSERVATION_MODE,
                     lr=LR,
                     max_grad_norm=GRAD_CLIP_NORM,
                     name=leader_checkpoint))
        candidate_leader.load_state_dict(
            torch.load(path, map_location=lambda storage, loc: storage))
        candidate_leaders_map[leader_checkpoint] = candidate_leader

    candidate_scores = []  # list[(filename, score)]
    filenames, candidate_leaders = zip(*candidate_leaders_map.items())
    for i, (filename,
            candidate_leader) in enumerate(zip(filenames, candidate_leaders)):
        print "EVALUATING {}".format(candidate_leader.name)
        leaders = EnsembleDQNAgent(candidate_leaders[:i] +
                                   candidate_leaders[i + 1:])
        candidate_scores.append((filename,
                                 evaluate(candidate_leader, leaders,
                                          EPISODES_EVALUATE_PURGE)))
    sorted_scores = sorted(candidate_scores, key=lambda x: x[1], reverse=True)

    print "SCORES: {}".format(sorted_scores)
    for filename, score in sorted_scores[NUM_LEADERS:]:
        print "PURGING ({}, {})".format(filename, score)
        leader_path = os.path.join(LEADER_DIR, filename)
        graveyard_path = os.path.join(GRAVEYARD_DIR, filename)
        os.rename(leader_path, graveyard_path)
示例#7
0
    def __init__(self,
                 input_dim,
                 output_dim,
                 x_mean,
                 aux_op_dims=[],
                 op_act=None):
        """
        Example classifier with 2 GRUD layers, {aux_op_dims} auxiliary target classifiers, and 1 primary target classifier
        """
        super(StackedGRUDClassifier, self).__init__()
        self.device = utils.try_gpu()

        # Assign input and hidden dim
        self.hidden_dim = input_dim * 6
        self.output_dim = output_dim
        self.x_mean = torch.tensor(x_mean, device=self.device, dtype=float)

        # Activation function
        self.op_act = op_act or nn.LeakyReLU()

        # GRU layers
        self.gru1 = GRUDCell(input_dim, self.hidden_dim, input_dim, input_dim,
                             self.x_mean)
        self.gru2 = GRUDCell(self.hidden_dim, self.hidden_dim, input_dim,
                             input_dim)

        # 4 FC Layers with dropout for each Aux output
        self.aux_fc_layers = nn.ModuleList()
        for aux in aux_op_dims:
            self.aux_fc_layers.append(
                nn.Sequential(
                    nn.Linear(self.hidden_dim, self.hidden_dim // 3),
                    nn.Dropout(0.3), self.op_act,
                    nn.Linear(self.hidden_dim // 3, self.hidden_dim // 9),
                    nn.Dropout(0.3), self.op_act,
                    nn.Linear(self.hidden_dim // 9, self.hidden_dim // 27),
                    nn.Dropout(0.3), self.op_act,
                    nn.Linear(self.hidden_dim // 27, aux)))
            nn.init.xavier_normal_(self.aux_fc_layers[-1][0].weight, 0.1)
            nn.init.xavier_normal_(self.aux_fc_layers[-1][3].weight, 0.1)
            nn.init.xavier_normal_(self.aux_fc_layers[-1][6].weight, 0.1)
            nn.init.xavier_normal_(self.aux_fc_layers[-1][9].weight, 0.1)

        # 4 FC Layers with dropout for primary output
        self.fc_op = nn.Sequential(
            nn.Linear(self.hidden_dim, self.hidden_dim // 3), nn.Dropout(0.3),
            self.op_act, nn.Linear(self.hidden_dim // 3, self.hidden_dim // 9),
            nn.Dropout(0.3), self.op_act,
            nn.Linear(self.hidden_dim // 9, self.hidden_dim // 27),
            nn.Dropout(0.3), self.op_act,
            nn.Linear(self.hidden_dim // 27, output_dim))
        nn.init.xavier_normal_(self.aux_fc_layers[-1][0].weight, 0.1)
        nn.init.xavier_normal_(self.aux_fc_layers[-1][3].weight, 0.1)
        nn.init.xavier_normal_(self.aux_fc_layers[-1][6].weight, 0.1)
        nn.init.xavier_normal_(self.aux_fc_layers[-1][9].weight, 0.1)
示例#8
0
def main():
    net = get_net()
    trainIter, testIter = get_train_test()
    trainer, loss = get_trainer(net)
    utils.train(trainIter,
                testIter,
                net,
                loss,
                trainer,
                utils.try_gpu(),
                1000,
                print_batches=100)
示例#9
0
文件: train.py 项目: suraj813/GRU-D
def eval_model(model, test_iter, tgt_col, nb_classes):
    """
    Return dict containing:
    - Log Loss
    - Accuracy
    - Precision, Recall, F1
    - Cohen's Kappa 
    - Matthew's Corr Coef
    - OvA AUC ROC
    - Binary Brier Loss (if multiclass, min and max label are considered)
    - PR Curve
    """
    device = utils.try_gpu()
    test_loss = 0
    accuracy = 0
    loss_criterion = nn.CrossEntropyLoss()
    conf_matrix = torch.zeros(nb_classes, nb_classes, device=device)
    model.to(device)

    model.eval() # No dropout needed 
    with torch.no_grad(): # require_grad = False
        for batch, (X,y_dict) in enumerate(test_iter):
            y = y_dict[tgt_col]
            h1 = model.init_hidden(test_iter.batch_size)
            h2 = model.init_hidden(test_iter.batch_size)

            yhat, h2 = model.predict(X.to(device).float(), h1, h2)
            _, labels = torch.max(yhat, 1)

            test_loss += loss_criterion(yhat.to(device),y.to(device)).item()
            accuracy += (labels.to(device).long()==y.to(device).long()).float().mean()

            for t,p in zip(y.view(-1), labels.view(-1)):
                conf_matrix[t.long(), p.long()] += 1

            # y, yhat, [logits for all classes]
            preds = torch.cat((torch.unsqueeze(y.to(device).float(), 1), 
                            torch.unsqueeze(labels.float(), 1),
                            torch.softmax(yhat,1).float()),  1).to('cpu') 

            
    conf_matrix = conf_matrix.detach()
    accuracy = (accuracy/(batch+1)).item()
    exp_accuracy = sum(conf_matrix.sum(0)/conf_matrix.sum() * conf_matrix.sum(1)/conf_matrix.sum()).item()
    kappa = (accuracy-exp_accuracy)/(1-exp_accuracy)

    eval_scores = {'loss':test_loss/(batch+1), 'accuracy':accuracy, 'conf_matrix':conf_matrix.tolist(), 'kappa':kappa}
    eval_scores.update(clf_report(preds))
    model.train()
    return eval_scores
示例#10
0
def k_fold_cross_valid(k, epochs, verbose_epoch, X_train, y_train,
                       learning_rate, weight_decay):
    global X_test_new
    global global_round
    global global_type
    global Y_test_new
    global global_predict
    assert k > 1
    fold_size = X_train.shape[0] // k
    train_loss_sum = 0.0
    test_loss_sum = 0.0
    for test_i in range(k):
    #for test_i in [3,2,1,0,4]:
        X_val_test = X_train[test_i * fold_size: (test_i + 1) * fold_size, :]
        y_val_test = y_train[test_i * fold_size: (test_i + 1) * fold_size]

        val_train_defined = False
        print('round is {}'.format(test_i))
        global_round = test_i
        for i in range(k):
            if i != test_i:
                X_cur_fold = X_train[i * fold_size: (i + 1) * fold_size, :]
                y_cur_fold = y_train[i * fold_size: (i + 1) * fold_size]
                if not val_train_defined:
                    X_val_train = X_cur_fold
                    y_val_train = y_cur_fold
                    val_train_defined = True
                else:
                    X_val_train = nd.concat(X_val_train, X_cur_fold, dim=0)
                    y_val_train = nd.concat(y_val_train, y_cur_fold, dim=0)
        ctx = utils.try_gpu()
        net = ResNet(1)
        net.initialize(ctx=ctx, init=init.Xavier())
        train_loss, test_loss = Train(net, X_val_train, y_val_train, X_val_test, y_val_test, epochs, verbose_epoch, learning_rate, weight_decay)
        train_loss_sum += train_loss
        print("Round is: {}, Type is: {}, Final train loss is: {}, Test loss is: {}, target is: {}".format(global_round, global_type, train_loss, test_loss, Y_test_new))
        preds = net(X_test_new).asnumpy().reshape(1, -1)[0]
        #global_predict.append(preds)
        print(preds)
示例#11
0
def main(config):
    if os.path.isfile(config['data_loader']['args']['dataset']['alphabet']):
        config['data_loader']['args']['dataset']['alphabet'] = str(
            np.load(config['data_loader']['args']['dataset']['alphabet']))

    prediction_type = config['arch']['args']['prediction']['type']
    num_class = len(config['data_loader']['args']['dataset']['alphabet'])

    # loss 设置
    if prediction_type == 'CTC':
        criterion = CTCLoss()
    else:
        raise NotImplementedError

    ctx = try_gpu(config['trainer']['gpus'])
    model = get_model(num_class, config['arch']['args'])
    model.hybridize()
    model.initialize(ctx=ctx)

    img_w = config['data_loader']['args']['dataset']['img_w']
    img_h = config['data_loader']['args']['dataset']['img_h']
    train_loader, val_loader = get_dataloader(
        config['data_loader']['type'],
        config['data_loader']['args'],
        num_label=model.get_batch_max_length(img_h=img_h, img_w=img_w,
                                             ctx=ctx))

    config['lr_scheduler']['args']['step'] *= len(train_loader)
    config['name'] = config['name'] + '_' + model.model_name
    trainer = Trainer(config=config,
                      model=model,
                      criterion=criterion,
                      train_loader=train_loader,
                      val_loader=val_loader,
                      ctx=ctx)
    trainer.train()
示例#12
0
def get_net():
    mod = import_module('symbol.resnet')
    net = mod.get_symbol(classNum, utils.try_gpu())
    print(net)
    return net
示例#13
0
文件: demo.py 项目: z01nl1o02/tests
def main():
    net = get_net()
    trainIter, testIter = get_train_test()
    trainer,loss = get_trainer(net)
    utils.train(trainIter, testIter, net, loss, trainer, utils.try_gpu(), 1000,print_batches=100)
示例#14
0
文件: demo.py 项目: z01nl1o02/tests
def get_net():      
    mod = import_module('symbol.ninnet')
    net = mod.get_symbol(classNum,utils.try_gpu())
    print(net)
    return net 
示例#15
0
文件: train.py 项目: suraj813/GRU-D
def train_epoch(model, train_iter, tgt_col, aux_cols, criterion, optimizer, aux_alpha, tr_alpha,\
                scheduler=None, print_every=10, plotter=None):

    def get_aux_loss(pred_aux, true_aux):
        aux_criterion = nn.BCEWithLogitsLoss() # MultiLabel
        combined_aux_loss = 0
        for truth, pred in zip(true_aux, pred_aux)
            if len(truth.size())==1: 
                truth = torch.unsqueeze(truth, 1)
            combined_aux_loss += aux_criterion(pred, truth)
        return combined_aux_loss

    device = utils.try_gpu()
    metrics = utils.Accumulator(5) #batch, loss, outputloss, trloss, auxloss
    batch_size = train_iter.batch_size
    denom = 1+aux_alpha+tr_alpha
    mtl_loss_weights = [1/denom, aux_alpha/denom, tr_alpha/denom]

    for batch, (X, y_dict) in enumerate(train_iter):
        X = X.to(device)  
        y_dict = y_dict.to(device)
        
        # GET LABELS
        true_op = y_dict[tgt_col]   # OP target tensor  
        true_aux = [y_dict[ac] for ac in aux_cols] # List of Aux target tensors
        
        # GET HIDDENS
        h1 = model.init_hidden(batch_size)
        h2 = model.init_hidden(batch_size)

        # FORWARD PASS
        pred_op, pred_tr, pred_aux, h2 = model(X, h1, h2)   

        # OP LOSS
        op_loss = criterion(pred_op, true_op) # Output Loss
        
        # TR LOSS | Reshape replicated targets and predictions for loss compute. No linear scaling.
        seq_len = X.size(2)
        true_tr = torch.unsqueeze(true_op, 1).repeat(1, seq_len).view(batch_size*seq_len)
        pred_tr = pred_tr.view(batch_size*seq_len, -1) # [batch_size*seq_len, C]
        tr_loss = criterion(pred_tr.to(device), true_tr)

        # AUX LOSS
        aux_loss = get_aux_loss(pred_aux, true_aux)
        
        # COMBINED LOSS
        loss = mtl_loss_weights[0]*op_loss + mtl_loss_weights[1]*aux_loss + mtl_loss_weights[2]*tr_loss # Weighted combination of OP, Aux, TR loss
        
        # BACKPROP
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
         
        # STORE METRICS
        metrics.add(1, loss.item(), op_loss.item(),tr_loss.item(),aux_loss.item())
        
        if batch%print_every == 0:
            plotter.plot_grad_flow(model.named_parameters())
            print(f"Minibatch:{batch}    OPLoss:{metrics[2]/metrics[0]}    TRLoss:{metrics[3]/metrics[0]}    AuxLoss:{metrics[4]/metrics[0]}    AggLoss:{metrics[1]/metrics[0]}        Examples seen: {metrics[0]*batch_size}")
        
    return metrics
示例#16
0
    else:
        with open('../input/GD_EM.plk', "rb") as f:
            em = pickle.load(f)

    print('updating net...')
    em = array(em, ctx=mx.cpu())
    kf_label = np.ones(train_label.shape)
    for i in range(train_label.shape[1]):
        kf_label[:, i] = 2**i
    kf_label = np.sum(kf_label, axis=1)

    kf = StratifiedKFold(n_splits=args.kfold, shuffle=True)
    for i, (inTr, inTe) in enumerate(kf.split(train_data, kf_label)):
        print('training fold: ', i)
        #         ctx = [mx.gpu(0), mx.gpu(1)]# , mx.gpu(4), mx.gpu(5)]
        ctx = [utils.try_gpu(), utils.try_gpu()]
        net = net_define_eu()

        xtr = train_data[inTr]
        xte = train_data[inTe]
        ytr = train_label[inTr]
        yte = train_label[inTe]
        data_iter = NDArrayIter(data=xtr,
                                label=ytr,
                                batch_size=args.batch_size,
                                shuffle=True)
        val_data_iter = NDArrayIter(data=xte,
                                    label=yte,
                                    batch_size=args.batch_size,
                                    shuffle=False)
示例#17
0
def get_net():      
    mod = import_module('symbol.convnet')
    net = mod.get_symbol(classNum,utils.try_gpu())
    return net 
示例#18
0
文件: test.py 项目: z01nl1o02/tests
mean[0,:,:] = 0.4914
mean[1,:,:] = 0.4822
mean[2,:,:] = 0.4465
std = np.zeros(dataShape)
std[0,:,:] = 0.2023
std[1,:,:] = 0.1994
std[2,:,:] = 0.2010

def test_transform(X,Y):
    out = X.astype(np.float32)/255.0
    out = np.transpose(out,(2,0,1))
    #pdb.set_trace()
    #return (mx.image.color_normalize(out,np.asarray([0.4914, 0.4822, 0.4465]), np.asarray([0.2023, 0.1994, 0.2010])),Y)
    return (mx.image.color_normalize(out.asnumpy(),mean,std),Y)
    
ctx = utils.try_gpu()
mod = import_module('symbol.resnet18')
net = mod.get_symbol(classNum,ctx)
net.load_params(pretrained,ctx=ctx)

test_ds = mx.gluon.data.vision.ImageFolderDataset( os.path.join(inputroot, 'test'), flag=1, transform = test_transform)
loader = mx.gluon.data.DataLoader
test_data = loader( test_ds, testBatchSize, shuffle=False, last_batch='keep')


preds = []
for data, label in test_data:
    output = net(data.as_in_context(ctx))
    preds.extend(output.argmax(axis=1).astype(int).asnumpy())

hit = 0
def get_net():      
    mod = import_module('symbol.facenet')
    net = mod.get_symbol(outputNum,utils.try_gpu(),verbose=False)
    return net 
示例#20
0
文件: main.py 项目: ezliu/SlimeAI
def challenger_round():
    challengers = []
    leaders = []
    leader_checkpoints = os.listdir(LEADER_DIR)
    # Need to share the same schedule with all challengers, so they all anneal
    # at same rate
    epsilon_schedule = LinearSchedule(EPS_START, EPS_END, TRAIN_FRAMES)
    for i in xrange(NUM_LEADERS):
        challenger = try_gpu(
            DQNAgent(6,
                     epsilon_schedule,
                     OBSERVATION_MODE,
                     lr=LR,
                     max_grad_norm=GRAD_CLIP_NORM))
        if i < len(leader_checkpoints):
            leader = try_gpu(
                DQNAgent(6, LinearSchedule(0.1, 0.1, 500000),
                         OBSERVATION_MODE))
            leader_path = os.path.join(LEADER_DIR, leader_checkpoints[i])
            print "LOADING CHECKPOINT: {}".format(leader_path)
            challenger.load_state_dict(
                torch.load(leader_path,
                           map_location=lambda storage, loc: storage))
            leader.load_state_dict(
                torch.load(leader_path,
                           map_location=lambda storage, loc: storage))
        else:
            leader = RandomAgent(6)
            print "INITIALIZING NEW CHALLENGER AND LEADER"
        challengers.append(challenger)
        leaders.append(leader)

    if CHALLENGER_DIR is not None:
        challengers = []
        # Load in all of the leaders
        for checkpoint in os.listdir(CHALLENGER_DIR):
            path = os.path.join(CHALLENGER_DIR, checkpoint)
            print "LOADING FROM CHALLENGER_DIR: {}".format(path)
            challenger = try_gpu(
                DQNAgent(6,
                         LinearSchedule(0.05, 0.05, 1),
                         CHALLENGER_OBSERVATION_MODE,
                         lr=LR,
                         max_grad_norm=GRAD_CLIP_NORM,
                         name=checkpoint))
            challenger.load_state_dict(
                torch.load(path, map_location=lambda storage, loc: storage))
            challengers.append(challenger)

    challenger = EnsembleDQNAgent(challengers)
    leader = EnsembleDQNAgent(leaders)
    if OPPONENT is not None or HUMAN:
        leader = NoOpAgent()
    replay_buffer = ReplayBuffer(1000000)
    rewards = collections.deque(maxlen=1000)
    frames = 0  # number of training frames seen
    episodes = 0  # number of training episodes that have been played
    with tqdm(total=TRAIN_FRAMES) as progress:
        # Each loop completes a single episode
        while frames < TRAIN_FRAMES:
            states = env.reset()
            challenger.reset()
            leader.reset()
            episode_reward = 0.
            episode_frames = 0
            # Each loop completes a single step, duplicates _evaluate() to
            # update at the appropriate frame #s
            for _ in xrange(MAX_EPISODE_LENGTH):
                frames += 1
                episode_frames += 1
                action1 = challenger.act(states[0])
                action2 = leader.act(states[1])
                next_states, reward, done = env.step(action1, action2)
                episode_reward += reward

                # NOTE: state and next_state are LazyFrames and must be
                # converted to np.arrays
                replay_buffer.add(
                    Experience(states[0], action1._action_index, reward,
                               next_states[0], done))
                states = next_states

                if len(replay_buffer) > 50000 and \
                        frames % 4 == 0:
                    experiences = replay_buffer.sample(32)
                    challenger.update_from_experiences(experiences)

                if frames % 10000 == 0:
                    challenger.sync_target()

                if frames % SAVE_FREQ == 0:
                    # TODO: Don't access internals
                    for agent in challenger._agents:
                        path = os.path.join(LEADER_DIR,
                                            agent.name + "-{}".format(frames))
                        print "SAVING CHECKPOINT TO: {}".format(path)
                        torch.save(agent.state_dict(), path)
                    #path = os.path.join(
                    #        LEADER_DIR, challenger.name + "-{}".format(frames))
                    #torch.save(challenger.state_dict(), path)

                if frames >= TRAIN_FRAMES:
                    break

                if done:
                    break

            if episodes % 300 == 0:
                print "Evaluation: {}".format(
                    evaluate(challenger, leader, EPISODES_EVALUATE_TRAIN))
            print "Episode reward: {}".format(episode_reward)
            episodes += 1
            rewards.append(episode_reward)
            stats = challenger.stats
            stats["Avg Episode Reward"] = float(sum(rewards)) / len(rewards)
            stats["Num Episodes"] = episodes
            stats["Replay Buffer Size"] = len(replay_buffer)
            progress.set_postfix(stats, refresh=False)
            progress.update(episode_frames)
            episode_frames = 0
示例#21
0
EMBED_SIZE = hp.EMBED_SIZE

WORD_HIDDEN_SIZE = hp.WORD_HIDDEN_SIZE
WORD_NLAYERS = hp.WORD_NLAYERS

SENTENCE_HIDDEN_SIZE = hp.SENTENCE_HIDDEN_SIZE
SENTENCE_NLAYERS = hp.SENTENCE_NLAYERS

NDOC_DIMS = hp.NDOC_DIMS
LR = hp.LR

VOCAB_PATH = hp.VOCAB_PATH
SENT_RNN_MODEL_PATH = hp.SENT_RNN_MODEL_PATH
ENCODER_MODEL_PATH = hp.ENCODER_MODEL_PATH
CTX = try_gpu()

PORT = hp.PORT

app = Flask(__name__)

word_vocab = None
encoder = None
sent_rnn = None


@app.route('/')
def do_summarize():
    source = ''
    src_type = ''
    json_result = {"status": "success"}
示例#22
0
        choices=None,
        help="filepath to image",
        metavar=None,
    )

    args = parser.parse_args()

    im = Image.open(args.image[0])

    torch.set_grad_enabled(False)

    im = torchvision.transforms.functional.to_tensor(im)

    H, W = im.shape[1:3]

    im = try_gpu(im)

    im = im.unsqueeze(0)

    # box filter
    im_box_filterd = box_filter(im, 5, 2)

    im_box_filterd = im_box_filterd.squeeze()

    im_box_filterd = torchvision.transforms.functional.to_pil_image(
        im_box_filterd)

    im_box_filterd.save("output-box-filtered.jpg")

    # shift filter
    im_shift_filterd = shift_filter(im, 5, 2)
import utils
from tools.RNNLanguageManager import *
from samples.lyrics.common import read_lyrics
if __name__ == "__main__":
    filename = utils.get_file_name(__file__) + ".params"
    indices, index_to_char, char_to_index, _ = read_lyrics()
    parameter = RNNLanguageParameter(
        num_steps = 35,
        num_epochs=10,
        indices = indices,
        index_to_char = index_to_char,
        char_to_index = char_to_index,
        filename = filename,
        context=utils.try_gpu(),
        rnnType=rnn.RNN
    )

    manager = RNNLanguageManager(parameter)
    manager.initialize()
    def per_epoch_finish_handler(param):
        print(param)
        index = random.randint(0, len(indices) - 2)
        prefix = [index_to_char[index] for index in indices[index: index + 2]]
        print(manager.predict(prefix, 50))
    parameter.per_epoch_finish_handler = per_epoch_finish_handler
    manager.train()
    encoder_blk = EncoderBlock(24, 48, 8, 0.5)
    logging.info(f'endcoer output shape: {encoder_blk(X, valid_length).shape}')

    logging.info('Transformer 编码器 ...')
    encoder = TransformerEncoder(200, 24, 48, 8, 2, 0.5)
    logging.info(
        f'encoder output shape: {encoder(torch.ones((2, 100)).long(), valid_length).shape}'
    )


if __name__ == '__main__':
    # test()

    embed_size, embedding_size, num_layers, dropout = 32, 32, 2, 0.05
    batch_size, num_steps = 64, 10
    lr, num_epochs, ctx = 0.005, 250, try_gpu()
    logging.info(f'using {ctx} ...')
    num_hiddens, num_heads = 64, 4

    src_vocab, tgt_vocab, train_iter = load_data_nmt(batch_size, num_steps)

    encoder = TransformerEncoder(len(src_vocab), embedding_size, num_hiddens,
                                 num_heads, num_layers, dropout)
    decoder = TransformerDecoder(len(src_vocab), embedding_size, num_hiddens,
                                 num_heads, num_layers, dropout)
    model = EncoderDecoder(encoder, decoder)
    train_s2s_ch9(model, train_iter, lr, num_epochs, ctx)

    # 测试模型
    model.eval()
    for sentence in ['Go .', 'Wow !', "I'm OK .", 'I won !']:
示例#25
0
    decoder = Seq2SeqAttentionDecoder(vocab_size=10, embed_size=8,
                                      num_hiddens=16, num_layers=2)
    X = torch.zeros((4, 7), dtype=torch.long)
    print("batch size=4\nseq_length=7\nhidden dim=16\nnum_layers=2\n")
    print('encoder output size:', encoder(X)[0].size())
    print('encoder hidden size:', encoder(X)[1][0].size())
    print('encoder memory size:', encoder(X)[1][1].size())
    state = decoder.init_state(encoder(X), None)
    out, state = decoder(X, state)
    print(out.shape, len(state), state[0].shape, len(state[1]), state[1][0].shape)


if __name__ == '__main__':
    # test()

    embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.0
    batch_size, num_steps = 64, 10
    lr, num_epochs, ctx = 0.005, 500, try_gpu()

    src_vocab, tgt_vocab, train_iter = load_data_nmt(batch_size, num_steps)
    encoder = Seq2SeqEncoder(
        len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
    decoder = Seq2SeqAttentionDecoder(
        len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
    model = EncoderDecoder(encoder, decoder)

    train_s2s_ch9(model, train_iter, lr, num_epochs, ctx)
    for sentence in ['Go .', 'Good Night !', "I'm OK .", 'I won !']:
        print(sentence + ' => ' + predict_s2s_ch9(
              model, sentence, src_vocab, tgt_vocab, num_steps, ctx))
示例#26
0
文件: kim.py 项目: Vincent717/kim
from mxnet import nd, init
from mxnet import gluon
from mxnet.gluon import nn, rnn
from utils import find_wordnet_rel, try_gpu
import random

# class KnowledgeEnrichedCoAttention(nn.Block):
#     def __init__(self, **kwargs):
#         super(KnowledgeEnrichedCoAttention, self).__init__(**kwargs)
#         self.kb = init_kb()
#         with self.name_scope():
#             self.attention_h = nn.soft

iszero = lambda x: sum(x != 0).asscalar() == 0

_ctx = try_gpu()


def F(m, ctx=_ctx):
    """
    1
    m: (batch_size, seq_len, seq_len, 5)
    """
    out = nd.zeros(m.shape[:3], ctx=ctx)
    for ba in range(m.shape[0]):
        for i in range(m.shape[1]):
            for j in range(m.shape[2]):
                if not iszero(m[ba][i][j]):
                    out[ba][i][j] = 1
    return out
示例#27
0
        lr_step_epochs=None,
        # lr_step_epochs = '26,28,30,32,34',
        # lr_decay, the ratio to reduce lr on each step. e.g. lr_decay = 0.1.
        lr_decay=0.1,

        # chechpoint
        # load_epoch. Load trained model, load_epoch is the epoch of the model. e.g. load_epoch = 28.
        load_epoch=
        0,  # Load trained model. if load_epoch is 0, represent from random init to train.
        # model_prefix, the prefix of save checkp, e.g., SSD_300x300.params.
        model_prefix='model/SSD_300x300',
    )
    args = parser.parse_args()

    # context
    ctx = utils.try_gpu()

    # network
    net = SSD(num_classes=args.num_classes,
              sizes=args.sizes,
              ratios=args.ratios)
    # There are 21 classes, the first class is background. label form 0 to 20.
    # In the succeeding process, num_classes will plus 1.

    # init weight and bias
    net.initialize(ctx=ctx, init=mx.initializer.Xavier(magnitude=2))
    # initialize() define in mxnet/gulon/parameter.py.

    # Loss. Loss will defined in utils.py.

    # training and validating data. Use data.py to load data iter.
示例#28
0
文件: train.py 项目: suraj813/GRU-D
def train_model(train_iter, valid_iter, X_Mean, tgt_col, aux_cols, epochs, modelname, nb_classes, \
                lr=0.001, aux_alpha=0, tr_alpha=0, class_weights=None, l2=None, model=None, print_every=100):
    """
    Train a GRUD model

    :param train_iter: Train DataLoader
    :param valid_iter: Valid DataLoader
    :param X_Mean: Empirical Mean values for each dimension in the input (only important for variables with missing data)
    :param tgt_col: (str) Name of OP target
    :param aux_cols: list(str) of names of Aux targets. 
    :param epochs: Int of epochs to run
    :param modelname: Unique name for this model
    :param nb_classes: Number of OP target classes
    :param aux_alpha: Weight for Aux Loss
    :param tr_alpha: Weight for TR Loss
    :param class_weights (optional): Weights to scale OP Loss (for skewed datasets)
    """
    device = utils.try_gpu()

    # Set directory for model outputs
    try:
        os.makedirs(os.path.join('models',modelname))
        os.makedirs(os.path.join('models',modelname, 'gradflow'))
    except FileExistsError: pass

    # Initialize plotter class for gradflow
    plotter = TrainPlot(modelname)

    # Initialize model and learners
    class_weights = class_weights or [1]*nb_classes 
    l2 = l2 or 0

    for X,y in train_iter: break
    input_dim = X.size(-1)
    aux_dim = [ (y[aux_c].size(-1) if len(y[aux_c].size())>1 else 1) for aux_c in aux_cols] # if-else for targets with single dimennsion. their size(-1) will be batchsize

    model = StackedGRUDClassifier(input_dim, nb_classes, X_Mean, aux_dim).to(device=device, dtype=torch.float)    
    criterion = nn.CrossEntropyLoss(weight=torch.Tensor(class_weights).to(device=device))
    optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 30, 0.85)

    # Store training metrics    
    train_meta = {}
    train_meta['train_losses'] = []
    train_meta['valid_losses'] = []
    train_meta['min_valid_loss'] = sys.maxsize
    train_meta['epoch_results'] = []


    for epoch in range(epochs):
        # TRAIN EPOCH
        t0 = time.time()
        metrics = train_epoch(model, train_iter, tgt_col, aux_cols, criterion, optimizer, aux_alpha, tr_alpha, scheduler, print_every=print_every, plotter=plotter)
        if epoch<200:scheduler.step()
        print(f"Epoch trained in {time.time()-t0}")

        # EVALUATE AGAINST VALIDATION SET
        t0 = time.time()
        eval_scores = eval_model(model, valid_iter, tgt_col, nb_classes)
        train_meta['epoch_results'].append(eval_scores)
        print(f"Evaluation done in {time.time()-t0}")

        t0 = time.time()
        # SAVE CHECKPOINT
        if eval_scores['loss'] < train_meta['min_valid_loss'] or epoch % 20 == 0:
            train_meta['min_valid_loss'] = min(eval_scores['loss'], train_meta['min_valid_loss'])
            checkpoint = {
                'epoch': epoch + 1,
                'state_dict': model.state_dict(),
                'optimizer': optimizer.state_dict()
            }
            save_ckp(checkpoint, True, os.path.join('models', modelname, 'checkpoint.pt'), os.path.join('models', modelname, 'best_model.pt'))
            print(f"Checkpoint created")

        # LOG PROGRESS
        print("\n\n================================================================================================================\n")
        print(f"Epoch: {epoch+1}    TrainLoss: {metrics[1]/metrics[0]}    ValidLoss: {eval_scores['loss']}    ValidAcc:{eval_scores['accuracy']}       WallTime: {datetime.datetime.now()}\n")
        print(eval_scores['conf_matrix'])
        print(pd.DataFrame.from_dict(eval_scores['clf_report']))
        print(eval_scores['brier'])
        print(eval_scores['roc'])
        print("\n\n================================================================================================================\n")
        
        # SAVE TRAINING PROGRESS DATA
        train_meta['train_losses'].append(metrics[1]/metrics[0])
        train_meta['valid_losses'].append(eval_scores['loss'])
        utils.pkl_dump(train_meta, os.path.join('models', modelname, 'trainmeta.dict'))
        print(f"post eval dumping took {time.time()-t0}")

        # PLOT LOSSES
        t0 = time.time()
        plt.figure(1)
        plt.plot(train_meta['train_losses'])
        plt.plot(train_meta['valid_losses'])
        plt.xlabel("Minibatch")
        plt.ylabel("Loss")
        plt.savefig(os.path.join('models', modelname, modelname+'_lossPlot.png'), bbox_inches='tight')
        print(f"plotting took {time.time()-t0}")

    return model