示例#1
0
    def forward(self, input_tensor: torch.Tensor, hidden: torch.Tensor,
                encoder_outputs: torch.Tensor, batch_size: int):

        embedded = self.embedding(input_tensor)

        output, hidden = self.rnn(embedded, hidden)

        verify_shape(tensor=output,
                     expected=[1, batch_size, self.decoder_hidden_size])
        verify_shape(tensor=hidden,
                     expected=[
                         self.gru.num_layers, batch_size,
                         self.decoder_hidden_size
                     ])

        output = output.squeeze(dim=0)

        verify_shape(tensor=output,
                     expected=[batch_size, self.decoder_hidden_size])

        output = log_softmax(self.out(output), dim=1)

        verify_shape(tensor=attn_weights,
                     expected=[batch_size, self.max_src_length, 1])
        attn_weights = attn_weights.squeeze(dim=2)

        verify_shape(tensor=output, expected=[batch_size, self.output_size])
        verify_shape(tensor=hidden,
                     expected=[
                         self.gru.num_layers, batch_size,
                         self.decoder_hidden_size
                     ])
        verify_shape(tensor=attn_weights,
                     expected=[batch_size, self.max_src_length])

        # print(f"output.shape={output.shape}\t\thidden.shape={hidden.shape}\t\toutput[0].shape={output[0].shape}")

        # output.shape:             [seq_length=1, batch_size=1, decoder_hidden_size]
        # hidden.shape:             [num_layers=1, batch_size=1, decoder_hidden_size]
        #
        # output[0].shape:                        [batch_size=1, decoder_hidden_size]
        # output = log_softmax(self.out(output[0]), dim=1)

        # print(f"output.shape={output.shape}\t\thidden.shape={hidden.shape}\t\tattn_weights.shape={attn_weights.shape}")

        # output.shape:                           [batch_size=1, decoder_output_size]
        # hidden.shape:             [num_layers=1, batch_size=1, decoder_hidden_size]
        # attn_weights:                           [batch_size=1, encoder_max_len]
        #
        return output, hidden, attn_weights
示例#2
0
def encoder_decoder(encoder: EncoderRNN,
                    input_sequence: torch.LongTensor) -> torch.Tensor:
    sequence_length: int = input_sequence.shape[0]
    batch_size: int = input_sequence.shape[1]
    device: torch.device = input_sequence.device

    encoder_hidden = encoder.init_hidden(batch_size=batch_size, device=device)

    encoder_outputs = torch.zeros(
        sequence_length, batch_size, encoder.hidden_size,
        device=device)  # shape: [max_src_len, hidden_size]

    verify_shape(tensor=input_sequence, expected=[sequence_length, batch_size])
    verify_shape(
        tensor=encoder_hidden,
        expected=[encoder.num_hidden_layers, batch_size, encoder.hidden_size])
    verify_shape(tensor=encoder_outputs,
                 expected=[sequence_length, batch_size, encoder.hidden_size])

    for src_index in range(sequence_length):

        input_token_tensor: torch.Tensor = input_sequence[src_index]

        verify_shape(tensor=input_token_tensor, expected=[batch_size])
        verify_shape(tensor=encoder_hidden,
                     expected=[
                         encoder.num_hidden_layers, batch_size,
                         encoder.hidden_size
                     ])

        encoder_output, encoder_hidden = encoder(input_token_tensor,
                                                 encoder_hidden)

        verify_shape(tensor=encoder_hidden,
                     expected=[
                         encoder.num_hidden_layers, batch_size,
                         encoder.hidden_size
                     ])
        verify_shape(tensor=encoder_output,
                     expected=[1, batch_size, encoder.hidden_size])

        verify_shape(tensor=encoder_output[0],
                     expected=[batch_size, encoder.hidden_size])
        verify_shape(tensor=encoder_outputs[src_index],
                     expected=[batch_size, encoder.hidden_size])

        encoder_outputs[src_index] = encoder_output[0]

    verify_shape(tensor=encoder_outputs,
                 expected=[sequence_length, batch_size, encoder.hidden_size])
    return encoder_outputs
示例#3
0
    def decode_sequence(self,
                        encoder_outputs: torch.Tensor,
                        start_symbol: int,
                        max_length: int,
                        target_tensor: torch.Tensor = None):

        encoded_sequence_length: int = encoder_outputs.shape[0]
        batch_size: int = encoder_outputs.shape[1]
        encoder_hidden_size: int = encoder_outputs.shape[2]
        device = encoder_outputs.device

        decoder_input = torch.tensor(data=[[start_symbol] * batch_size],
                                     dtype=torch.long,
                                     device=device)

        decoder_hidden = self.init_hidden(batch_size=batch_size, device=device)

        verify_shape(tensor=decoder_input, expected=[1, batch_size])
        verify_shape(
            tensor=decoder_hidden,
            expected=[self.gru.num_layers, batch_size, self.gru.hidden_size])

        results: List[torch.Tensor] = list()

        for index in range(max_length):
            verify_shape(tensor=decoder_input, expected=[1, batch_size])
            verify_shape(tensor=decoder_hidden,
                         expected=[
                             self.gru.num_layers, batch_size,
                             self.gru.hidden_size
                         ])

            decoder_output, decoder_hidden, decoder_attention = self(
                decoder_input, decoder_hidden, encoder_outputs, batch_size)

            verify_shape(tensor=decoder_output,
                         expected=[batch_size, self.output_size])
            verify_shape(tensor=decoder_hidden,
                         expected=[
                             self.gru.num_layers, batch_size,
                             self.gru.hidden_size
                         ])
            verify_shape(tensor=decoder_attention,
                         expected=[batch_size, encoded_sequence_length])

            results.append(decoder_output)

            if target_tensor is None:
                _, top_i = decoder_output.topk(1)
                decoder_input = top_i.detach().permute(1, 0)
            else:
                # print(f"target_tensor.shape={target_tensor.shape}\tindex={index}\tmax_length={max_length}")
                decoder_input = target_tensor[index].unsqueeze(dim=0)

        return torch.stack(tensors=results, dim=0)
示例#4
0
    def forward(self, input_tensor: torch.Tensor, hidden: torch.Tensor,
                encoder_outputs: torch.Tensor, batch_size: int):

        if encoder_outputs.shape[0] != self.max_src_length:
            raise ValueError(
                "Encoder outputs provided to this method must have same length as self.max_src_length:"
                + f"\t{encoder_outputs.shape[0]} != {self.max_src_length}")

        # actual_src_length: int = max(self.max_src_length, input_tensor.shape[0])
        # print(f"self.max_src_length={self.max_src_length}\tinput_tensor.shape[0]={input_tensor.shape[0]}")
        verify_shape(tensor=input_tensor, expected=[1, batch_size])
        verify_shape(
            tensor=hidden,
            expected=[self.gru.num_layers, batch_size, self.gru.hidden_size])
        verify_shape(tensor=encoder_outputs,
                     expected=[
                         self.max_src_length, batch_size,
                         self.encoder_hidden_size
                     ])

        # input_tensor.shape:    [1, 1]
        # hidden.shape:          [num_hidden_layers=1, batch_size=1, decoder_hidden_size]
        # encoder_outputs.shape: [src_seq_len, encoder_hidden_size]

        #if input_tensor.shape == torch.Size([]):
        #    raise RuntimeError(f"input_tensor.shape={input_tensor.shape} is a problem")

        # if self.embedding(input_tensor).shape != self.embedding(input_tensor).view(1, 1, -1).shape:
        #    raise RuntimeError(f"input_tensor.shape={input_tensor.shape}\tembedding is {self.embedding(input_tensor).shape} vs expected {self.embedding(input_tensor).view(1, 1, -1).shape}")

        # print(f"input_tensor={input_tensor}\tdecoder input_tensor.shape={input_tensor.shape}\t\t" +
        #      f"decoder hidden.shape={hidden.shape}\t\t" +
        #       f"encoder_outputs.shape={encoder_outputs.shape}") #\t\tembedded.shape={embedded.shape}")

        # TODO: It should be safe to remove .view(1, 1, -1), as it appears to be a noop
        embedded = self.embedding(input_tensor)  #.view(1, 1, -1)

        verify_shape(tensor=embedded,
                     expected=[1, batch_size, self.embedding_size])

        # self.embedding(input_tensor).shape:  [1, 1, decoder_embedding_size]
        # embedded.shape:                      [1, 1, decoder_embedding_size]

        # print(f"self.embedding(input_tensor).shape={self.embedding(input_tensor).shape}\t\t" +
        #      f"self.embedding(input_tensor).view(1, 1, -1).shape={self.embedding(input_tensor).view(1, 1, -1).shape}\t\t" +
        #      f"embedded.shape={embedded.shape}")

        embedded = self.dropout(embedded)

        verify_shape(tensor=embedded,
                     expected=[1, batch_size, self.embedding_size])
        verify_shape(tensor=embedded[0],
                     expected=[batch_size, self.embedding_size])
        verify_shape(tensor=hidden[-1],
                     expected=[batch_size, self.gru.hidden_size])

        attn_input: torch.Tensor = torch.cat(tensors=(embedded[0], hidden[0]),
                                             dim=1)

        verify_shape(
            tensor=attn_input,
            expected=[batch_size, self.embedding_size + self.gru.hidden_size])

        # print(f"embedded[0].shape={embedded[0].shape}\t\t"+
        #      f"hidden[0].shape={hidden[0].shape}\t\t" )
        # sys.exit()
        #       f"torch.cat(tensors=(embedded[0], hidden[0]), dim=1).shape="+
        #       f"{torch.cat(tensors=(embedded[0], hidden[0]), dim=1).shape}")

        #print(f"self.attn(...).shape={self.attn(torch.cat(tensors=(embedded[0], hidden[0]), dim=1)).shape}\t\t"+
        #       f"softmax(...).shape="+
        #       f"{softmax(self.attn(torch.cat(tensors=(embedded[0], hidden[0]), dim=1)), dim=1).shape}")
        # embedded.shape:                      [1, 1, decoder_embedding_size]
        # embedded[0].shape:                      [1, decoder_embedding_size]
        #
        # hidden.shape:                        [1, 1, decoder_hidden_size]
        # hidden[0].shape:                        [1, decoder_hidden_size]
        #
        # torch.cat(tensors=(embedded[0], hidden[0]), dim=1).shape:  [1, embedded.shape[2]+hidden.shape[2]]
        #
        # self.attn(...).shape:                                      [1, decoder_max_len]
        # softmax(self.attn(...)).shape:                             [1, decoder_max_len]
        attn_weights = softmax(self.attn(attn_input), dim=1)

        verify_shape(tensor=attn_weights,
                     expected=[batch_size, self.max_src_length])
        verify_shape(tensor=encoder_outputs,
                     expected=[
                         self.max_src_length, batch_size,
                         self.encoder_hidden_size
                     ])

        # Permute dimensions to prepare for batched matrix-matrix multiply
        encoder_outputs = encoder_outputs.permute(1, 2, 0)
        attn_weights = attn_weights.unsqueeze(2)

        verify_shape(tensor=encoder_outputs,
                     expected=[
                         batch_size, self.encoder_hidden_size,
                         self.max_src_length
                     ])
        verify_shape(tensor=attn_weights,
                     expected=[batch_size, self.max_src_length, 1])

        #print(f"attn_weights.shape={attn_weights.shape}\t\t"+
        #       f"encoder_outputs.shape={encoder_outputs.shape}")

        #import sys;

        #sys.exit()

        # print(f"attn_weights.unsqueeze(0).shape={attn_weights.unsqueeze(0).shape}\t\t"+
        #       f"encoder_outputs.unsqueeze(0).shape={encoder_outputs.unsqueeze(0).shape}")

        # attn_weights.shape:                  [1, decoder_max_len]
        # encoder_outputs.shape:                  [decoder_max_len, encoder_hidden_size]
        #
        # attn_weights.unsqueeze(0).shape:     [1, 1, decoder_max_len]
        # encoder_outputs.unsqueeze(0).shape:     [1, decoder_max_len, encoder_hidden_size]
        #attn_applied = torch.bmm(attn_weights.unsqueeze(0), encoder_outputs.unsqueeze(0))  # <-- Original
        attn_applied = torch.bmm(encoder_outputs, attn_weights)  # <-- Batched

        # Get rid of superfluous final dimension
        #attn_applied = attn_applied.squeeze(dim=2)
        #verify_shape(tensor=attn_applied, expected=[batch_size, self.encoder_hidden_size])

        # print(f"attn_applied.shape={attn_applied.shape}\t\t"+
        #       f"embedded[0].shape={embedded[0].shape}\t\t"+
        #       f"attn_applied[0].shape={attn_applied[0].shape}\t\t"
        #       f"torch.cat(...).shape={torch.cat((embedded[0], attn_applied[0]), 1).shape}")

        # embedded.shape:                                  [1, batch_size=1, decoder_embedding_size]
        # attn_applied.shape:                              [1, batch_size=1, encoder_hidden_size]
        #
        # embedded[0].shape:                                  [batch_size=1, decoder_embedding_size]
        # attn_applied[0].shape:                              [batch_size=1, encoder_hidden_size]
        #
        # torch.cat((embedded[0], attn_applied[0]), 1).shape: [batch_size=1, decoder_embedding_size+encoder_hidden_size]
        #

        verify_shape(tensor=attn_applied,
                     expected=[batch_size, self.encoder_hidden_size, 1])
        verify_shape(tensor=embedded,
                     expected=[1, batch_size, self.embedding_size])

        # # The final dimension of attn_applied and the first dimension of embedded
        # #   represents seq_len, which is not needed at this point.
        # attn_applied = attn_applied.squeeze(dim=2)
        # embedded = embedded.squeeze(dim=0)
        #
        # verify_shape(tensor=attn_applied, expected=[batch_size, self.encoder_hidden_size])
        # verify_shape(tensor=embedded, expected=[batch_size, self.embedding_size])
        #
        # output = torch.cat((embedded, attn_applied), dim=1)
        # verify_shape(tensor=output, expected=[batch_size, self.embedding_size + self.encoder_hidden_size])

        attn_applied = attn_applied.permute(2, 0, 1)

        verify_shape(tensor=attn_applied,
                     expected=[1, batch_size, self.encoder_hidden_size])
        verify_shape(tensor=embedded,
                     expected=[1, batch_size, self.embedding_size])

        output = torch.cat(tensors=(embedded, attn_applied), dim=2)

        verify_shape(tensor=output,
                     expected=[
                         1, batch_size,
                         self.embedding_size + self.encoder_hidden_size
                     ])

        # print(f"output.shape={output.shape}")

        # output.shape:                                      [batch_size=1, encoder_hidden_size+decoder_embedding_size]
        # self.attn_combine(output).shape:                   [batch_size=1, decoder_hidden_size]
        # self.attn_combine(output).unsqueeze(0): [seq_len=1, batch_size=1, decoder_hidden_size]
        #
        output = self.attn_combine(output)  #.unsqueeze(0)

        verify_shape(tensor=output,
                     expected=[1, batch_size, self.encoder_hidden_size])

        # print(f"output.shape={output.shape}")
        # print(f"relu(output).shape={relu(output).shape}\t\thidden.shape={hidden.shape}")

        # output.shape:                [seq_length=1, batch_size=1, decoder_hidden_size]
        # relu(...).shape:             [seq_length=1, batch_size=1, decoder_hidden_size]
        # hidden.shape:                [num_layers=1, batch_size=1, decoder_hidden_size]
        #
        output = relu(output)

        verify_shape(tensor=output,
                     expected=[1, batch_size, self.encoder_hidden_size])

        output, hidden = self.gru(output, hidden)

        verify_shape(tensor=output,
                     expected=[1, batch_size, self.decoder_hidden_size])
        verify_shape(tensor=hidden,
                     expected=[
                         self.gru.num_layers, batch_size,
                         self.decoder_hidden_size
                     ])

        output = output.squeeze(dim=0)

        verify_shape(tensor=output,
                     expected=[batch_size, self.decoder_hidden_size])

        output = log_softmax(self.out(output), dim=1)

        verify_shape(tensor=attn_weights,
                     expected=[batch_size, self.max_src_length, 1])
        attn_weights = attn_weights.squeeze(dim=2)

        verify_shape(tensor=output, expected=[batch_size, self.output_size])
        verify_shape(tensor=hidden,
                     expected=[
                         self.gru.num_layers, batch_size,
                         self.decoder_hidden_size
                     ])
        verify_shape(tensor=attn_weights,
                     expected=[batch_size, self.max_src_length])

        # print(f"output.shape={output.shape}\t\thidden.shape={hidden.shape}\t\toutput[0].shape={output[0].shape}")

        # output.shape:             [seq_length=1, batch_size=1, decoder_hidden_size]
        # hidden.shape:             [num_layers=1, batch_size=1, decoder_hidden_size]
        #
        # output[0].shape:                        [batch_size=1, decoder_hidden_size]
        # output = log_softmax(self.out(output[0]), dim=1)

        # print(f"output.shape={output.shape}\t\thidden.shape={hidden.shape}\t\tattn_weights.shape={attn_weights.shape}")

        # output.shape:                           [batch_size=1, decoder_output_size]
        # hidden.shape:             [num_layers=1, batch_size=1, decoder_hidden_size]
        # attn_weights:                           [batch_size=1, encoder_max_len]
        #
        return output, hidden, attn_weights
示例#5
0
def train_iters(
        *,  #data: Data,
        corpus: Corpus,
        encoder: EncoderRNN,
        decoder: AttnDecoderRNN,
        device: torch.device,
        n_iters: int,
        batch_size: int,
        teacher_forcing_ratio: float,
        print_every: int = 1000,
        learning_rate: float = 0.01) -> None:

    data = torch.utils.data.DataLoader(dataset=corpus, batch_size=batch_size)

    start: float = time.time()
    plot_losses: List[float] = []
    print_loss_total: float = 0  # Reset every print_every
    plot_loss_total: float = 0  # Reset every plot_every

    encoder_optimizer: Optimizer = SGD(encoder.parameters(), lr=learning_rate)
    decoder_optimizer: Optimizer = SGD(decoder.parameters(), lr=learning_rate)
    #
    # training_pairs: List[ParallelTensor] = [random.choice(data.pairs).tensors(source_vocab=data.source_vocab,
    #                                                                           target_vocab=data.target_vocab,
    #                                                                           device=device)
    #                                         for _ in range(n_iters)]

    criterion: nn.NLLLoss = nn.NLLLoss(
        reduction='mean')  #ignore_index=corpus.characters.pad_int)

    #for pair in parallel_data:
    #    print(f"src={len(pair['data'])}\ttgt={len(pair['labels'])}")

    for iteration in range(1, n_iters + 1):  # type: int

        # training_pair: ParallelTensor = training_pairs[iteration - 1]
        # input_tensor: torch.Tensor = training_pair.source   # shape: [seq_len, batch_size=1]
        # target_tensor: torch.Tensor = training_pair.target  # shape: [seq_len, batch_size=1]

        for batch in data:
            #print(f"batch['data'].shape={batch['data'].shape}\tbatch['labels'].shape{batch['labels'].shape}")
            #sys.exit()
            input_tensor: torch.Tensor = batch["data"].permute(1, 0)
            target_tensor: torch.Tensor = batch["labels"].permute(1, 0)

            actual_batch_size: int = min(batch_size, input_tensor.shape[1])

            verify_shape(
                tensor=input_tensor,
                expected=[corpus.word_tensor_length, actual_batch_size])
            verify_shape(
                tensor=target_tensor,
                expected=[corpus.label_tensor_length, actual_batch_size])

            # print(f"input_tensor.shape={input_tensor.shape}\t\ttarget_tensor.shape={target_tensor.shape}")
            # sys.exit()

            loss: float = train(input_tensor=input_tensor,
                                target_tensor=target_tensor,
                                encoder=encoder,
                                decoder=decoder,
                                encoder_optimizer=encoder_optimizer,
                                decoder_optimizer=decoder_optimizer,
                                criterion=criterion,
                                device=device,
                                max_src_length=corpus.word_tensor_length,
                                max_tgt_length=corpus.label_tensor_length,
                                batch_size=actual_batch_size,
                                start_of_sequence_symbol=corpus.characters.
                                start_of_sequence_int,
                                teacher_forcing_ratio=teacher_forcing_ratio)

            print_loss_total += loss
            plot_loss_total += loss

        if iteration % print_every == 0:
            print_loss_avg: float = print_loss_total / print_every
            print_loss_total = 0
            print('%s (%d %d%%) %.4f' %
                  (time_since(since=start, percent=iteration / n_iters),
                   iteration, iteration / n_iters * 100, print_loss_avg))
            sys.stdout.flush()
示例#6
0
def train(
        *,
        input_tensor: torch.Tensor,  # shape: [src_seq_len, batch_size]
        target_tensor: torch.Tensor,  # shape: [tgt_seq_len, batch_size]
        encoder: EncoderRNN,
        decoder: AttnDecoderRNN,
        encoder_optimizer: Optimizer,
        decoder_optimizer: Optimizer,
        criterion: nn.Module,
        device: torch.device,
        max_src_length: int,
        max_tgt_length: int,
        batch_size: int,
        start_of_sequence_symbol: int,
        teacher_forcing_ratio: float) -> float:

    encoder_optimizer.zero_grad()
    decoder_optimizer.zero_grad()

    loss: torch.Tensor = torch.tensor(
        0, dtype=torch.float,
        device=device)  # shape: [] meaning this is a scalar

    encoder_outputs = encoder.encode_sequence(input_tensor)

    decoder_input = target_tensor[0].unsqueeze(dim=0)
    decoder_hidden = decoder.init_hidden(batch_size=batch_size, device=device)

    verify_shape(tensor=decoder_input, expected=[1, batch_size])
    verify_shape(tensor=target_tensor, expected=[max_tgt_length, batch_size])
    verify_shape(
        tensor=decoder_hidden,
        expected=[decoder.gru.num_layers, batch_size, decoder.gru.hidden_size])

    use_teacher_forcing = True if random.random(
    ) < teacher_forcing_ratio else False
    # use_teacher_forcing = False

    decoder_output = decoder.decode_sequence(
        encoder_outputs=encoder_outputs,
        start_of_sequence_symbol=start_of_sequence_symbol,
        max_length=max_tgt_length,
        target_tensor=target_tensor if use_teacher_forcing else None)
    # print(f"input_tensor.shape={input_tensor.shape}\tdecoder_output.shape={decoder_output.shape}\ttarget_tensor.shape={target_tensor.shape}\tmax_tgt_length={max_tgt_length}")

    # Our loss function requires predictions to be of the shape NxC, where N is the number of predictions and C is the number of possible predicted categories
    predictions = decoder_output.reshape(
        -1, decoder.output_size
    )  # Reshaping from [seq_len, batch_size, decoder.output_size] to [seq_len*batch_size, decoder.output_size]
    labels = target_tensor.reshape(
        -1
    )  # Reshaping from [seq_len, batch_size]                      to [seq_len*batch_size]
    loss += criterion(predictions, labels)
    #print(f"\t{decoder_output.view(-1,decoder_output.shape[-1]).shape}")
    #print(target_tensor.reshape(-1))
    #    print(f"\t{target_tensor.view(-1)}")
    #sys.exit()
    #loss += criterion(decoder_output.view(1,1,-1), target_tensor.view(-1))
    # loss += criterion(decoder_output.squeeze(dim=1), target_tensor.squeeze(dim=1))
    # for index, decoder_output in enumerate(start=1,
    #                                        iterable=decoder.decode_sequence(encoder_outputs=encoder_outputs,
    #                                               start_of_sequence_symbol=start_of_sequence_symbol,
    #                                               max_length=max_tgt_length,
    #                                               target_tensor=target_tensor if use_teacher_forcing else None)):
    #
    #     loss += criterion(decoder_output, target_tensor[index])

    loss.backward()

    encoder_optimizer.step()
    decoder_optimizer.step()

    return loss.item()