def trainOneEpoch(inputCoor, inputGraph, inputLabel, para, sess, trainOperaion, weight_dict, learningRate):
    dataChunkLoss = []
    dataChunkAcc = []
    dataChunkRegLoss = []
    for i in range(len(inputCoor)):
        xTrain_1, graphTrain_1, labelTrain_1 = inputCoor[i], inputGraph[i], inputLabel[i]
        graphTrain_1 = graphTrain_1.tocsr()
        labelBinarize = label_binarize(labelTrain_1, classes=[j for j in range(para.outputClassN)])
        xTrain, graphTrain, labelTrain = shuffle(xTrain_1, graphTrain_1, labelBinarize)
        # labelBinarize = label_binarize(labelTrain, classes=[j for j in range(40)])

        batch_loss = []
        batch_acc = []
        batch_reg = []
        batchSize = para.batchSize
        for batchID in range(len(labelBinarize) / para.batchSize):
            start = batchID * batchSize
            end = start + batchSize
            batchCoor, batchGraph, batchLabel = get_mini_batch(xTrain, graphTrain, labelTrain, start, end)
            batchGraph = batchGraph.todense()


            batchCoor = add_noise(batchCoor, sigma=0.008, clip=0.02)
            if para.weighting_scheme == 'uniform':
                batchWeight = uniform_weight(batchLabel)
            elif para.weighting_scheme == 'weighted':
                batchWeight = weights_calculation(batchLabel, weight_dict)
            else:
                print 'please enter the valid weighting scheme'
	        
	    #print batchWeight

            feed_dict = {trainOperaion['inputPC']: batchCoor, trainOperaion['inputGraph']: batchGraph,
                         trainOperaion['outputLabel']: batchLabel, trainOperaion['lr']: learningRate,
                         trainOperaion['weights']: batchWeight,
                         trainOperaion['keep_prob_1']: para.keep_prob_1, trainOperaion['keep_prob_2']: para.keep_prob_2}

            opt, loss_train, acc_train, loss_reg_train = sess.run(
                [trainOperaion['train'], trainOperaion['loss_total'], trainOperaion['acc'], trainOperaion['loss_reg']],
                feed_dict=feed_dict)

            #print('The loss loss_reg and acc for this batch is {},{} and {}'.format(loss_train, loss_reg_train, acc_train))
            batch_loss.append(loss_train)
            batch_acc.append(acc_train)
            batch_reg.append(loss_reg_train)

        dataChunkLoss.append(np.mean(batch_loss))
        dataChunkAcc.append(np.mean(batch_acc))
        dataChunkRegLoss.append(np.mean(batch_reg))


    train_average_loss = np.mean(dataChunkLoss)
    train_average_acc = np.mean(dataChunkAcc)
    loss_reg_average = np.mean(dataChunkRegLoss)
    return train_average_loss, train_average_acc, loss_reg_average
def trainOneEpoch(inputCoor, inputGraph, inputLabel, para, sess, trainOperaion,
                  weight_dict, learningRate):
    # Description: training one epoch (two options to train the model, using weighted gradient descent or normal gradient descent)
    # Input: (1)inputCoor: input coordinates (B, N, 3) (2) inputGraph: input graph (B, N*N) (3) inputLabel: labels (B, 1)
    #        (4) para: global Parameters  (5) sess: Session (6) trainOperaion: placeholder dictionary
    #        (7) weight_dict: weighting scheme used of weighted gradient descnet (8)learningRate: learning rate for current epoch
    # Return: average loss, acc, regularization loss for training set
    dataChunkLoss = []
    dataChunkAcc = []
    dataChunkRegLoss = []
    for i in range(len(inputLabel)):
        xTrain_1, graphTrain_1, labelTrain_1 = inputCoor[i], inputGraph[
            i], inputLabel[i]

        graphTrain_1 = graphTrain_1.tocsr()
        labelBinarize = label_binarize(labelTrain_1,
                                       classes=[j for j in range(40)])
        xTrain, graphTrain, labelTrain = shuffle(xTrain_1, graphTrain_1,
                                                 labelBinarize)

        batch_loss = []
        batch_acc = []
        batch_reg = []
        batchSize = para.batchSize
        for batchID in range(len(labelBinarize) / para.batchSize):
            start = batchID * batchSize
            end = start + batchSize
            batchCoor, batchGraph, batchLabel = get_mini_batch(
                xTrain, graphTrain, labelTrain, start, end)
            batchGraph = batchGraph.todense()
            batchCoor = add_noise(batchCoor, sigma=0.008, clip=0.02)
            if para.weighting_scheme == 'uniform':
                batchWeight = uniform_weight(batchLabel)
            elif para.weighting_scheme == 'weighted':
                batchWeight = weights_calculation(batchLabel, weight_dict)
            else:
                print 'please enter a valid weighting scheme'

            batchIndexL1, centroid_coordinates = farthest_sampling_new(
                batchCoor,
                M=para.clusterNumberL1,
                k=para.nearestNeighborL1,
                batch_size=batchSize,
                nodes_n=para.pointNumber)
            batchMiddleGraph = middle_graph_generation(centroid_coordinates,
                                                       batch_size=batchSize,
                                                       M=para.clusterNumberL1)

            feed_dict = {
                trainOperaion['inputPC']: batchCoor,
                trainOperaion['inputGraph']: batchGraph,
                trainOperaion['outputLabel']: batchLabel,
                trainOperaion['lr']: learningRate,
                trainOperaion['weights']: batchWeight,
                trainOperaion['keep_prob_1']: para.keep_prob_1,
                trainOperaion['keep_prob_2']: para.keep_prob_2,
                trainOperaion['batch_index_l1']: batchIndexL1,
                trainOperaion['l2Graph']: batchMiddleGraph,
                trainOperaion['batch_size']: para.batchSize
            }

            opt, loss_train, acc_train, loss_reg_train = sess.run(
                [
                    trainOperaion['train'], trainOperaion['loss_total'],
                    trainOperaion['acc'], trainOperaion['loss_reg']
                ],
                feed_dict=feed_dict)

            batch_loss.append(loss_train)
            batch_acc.append(acc_train)
            batch_reg.append(loss_reg_train)

            #print "The loss, L2 loss and acc for this batch is {}, {} and {}".format(loss_train, loss_reg_train, acc_train)

        dataChunkLoss.append(np.mean(batch_loss))
        dataChunkAcc.append(np.mean(batch_acc))
        dataChunkRegLoss.append(np.mean(batch_reg))

    train_average_loss = np.mean(dataChunkLoss)
    train_average_acc = np.mean(dataChunkAcc)
    loss_reg_average = np.mean(dataChunkRegLoss)
    return train_average_loss, train_average_acc, loss_reg_average
def trainOneEpoch(inputCoor, inputGraph, inputLabel, para, sess, trainOperaion,
                  weight_dict, learningRate):
    # Description: training one epoch (two options to train the model, using weighted gradient descent or normal gradient descent)
    # Input: (1)inputCoor: input coordinates (B, N, 3) (2) inputGraph: input graph (B, N*N) (3) inputLabel: labels (B, 1)
    #        (4) para: global Parameters  (5) sess: Session (6) trainOperaion: placeholder dictionary
    #        (7) weight_dict: weighting scheme used of weighted gradient descnet (8)learningRate: learning rate for current epoch
    # Return: average loss, acc, regularization loss for training set
    dataChunkLoss = []
    dataChunkAcc = []
    dataChunkRegLoss = []
    for i in range(len(inputLabel)):
        xTrain_1, graphTrain_1, labelTrain_1 = inputCoor[i], inputGraph[i], inputLabel[i]

        graphTrain_1 = graphTrain_1.tocsr()
        labelBinarize = label_binarize(labelTrain_1, classes=[j for j in range(40)])
        xTrain, graphTrain, labelTrain = shuffle(xTrain_1, graphTrain_1, labelBinarize)

        batch_loss = []
        batch_acc = []
        batch_reg = []
        batchSize = para.batchSize
        for batchID in range(len(labelBinarize) / para.batchSize):
            start = batchID * batchSize
            end = start + batchSize
            batchCoor, batchGraph, batchLabel = get_mini_batch(xTrain, graphTrain, labelTrain, start, end)
            batchGraph = batchGraph.todense()
            batchCoor = add_noise(batchCoor, sigma=0.008, clip=0.02)
	    if para.weighting_scheme == 'uniform':
		batchWeight = uniform_weight(batchLabel)
	    elif para.weighting_scheme == 'weighted':
                batchWeight = weights_calculation(batchLabel, weight_dict)
            else:
                print 'please enter a valid weighting scheme'

            batchIndexL1, centroid_coordinates = farthest_sampling_new(batchCoor, M=para.clusterNumberL1,
                                                                   k=para.nearestNeighborL1, batch_size=batchSize,
                                                                   nodes_n=para.pointNumber)
            batchMiddleGraph = middle_graph_generation(centroid_coordinates, batch_size = batchSize, M = para.clusterNumberL1)

            feed_dict = {trainOperaion['inputPC']: batchCoor, trainOperaion['inputGraph']: batchGraph,
                         trainOperaion['outputLabel']: batchLabel, trainOperaion['lr']: learningRate,
                         trainOperaion['weights']: batchWeight,
                         trainOperaion['keep_prob_1']: para.keep_prob_1, trainOperaion['keep_prob_2']: para.keep_prob_2,
                         trainOperaion['batch_index_l1']: batchIndexL1,
                         trainOperaion['l2Graph']: batchMiddleGraph, trainOperaion['batch_size']: para.batchSize}

            opt, loss_train, acc_train, loss_reg_train = sess.run(
                [trainOperaion['train'], trainOperaion['loss_total'], trainOperaion['acc'], trainOperaion['loss_reg']],
                feed_dict=feed_dict)

            batch_loss.append(loss_train)
            batch_acc.append(acc_train)
            batch_reg.append(loss_reg_train)

            #print "The loss, L2 loss and acc for this batch is {}, {} and {}".format(loss_train, loss_reg_train, acc_train)

        dataChunkLoss.append(np.mean(batch_loss))
        dataChunkAcc.append(np.mean(batch_acc))
        dataChunkRegLoss.append(np.mean(batch_reg))

    train_average_loss = np.mean(dataChunkLoss)
    train_average_acc = np.mean(dataChunkAcc)
    loss_reg_average = np.mean(dataChunkRegLoss)
    return train_average_loss, train_average_acc, loss_reg_average
示例#4
0
    def trainOneEpoch(self, writer, train_dataset, weight_dict):
        batchSize = self.para.trainBatchSize
        train_iter = train_dataset.iter(batchSize)
        batch_count = 0
        while True:
            try:
                SCoor_1, Coor_1, Graph_1, batchLabel = next(train_iter)
            except StopIteration:
                break
            # 为非均匀数据集加入每种对象类型占比
            if self.para.weighting_scheme == 'uniform':
                batchWeight = utils.uniform_weight(batchLabel)
            elif self.para.weighting_scheme == 'weighted':
                batchWeight = utils.weights_calculation(
                    batchLabel, weight_dict)
            else:
                print('please enter a valid weighting scheme')
                batchWeight = utils.uniform_weight(batchLabel)

            # layer_1: (2)down sampling and pooling
            IndexL1, Coor_2 = utils.farthest_sampling_new(
                Coor_1,
                M=self.para.vertexNumG2,
                k=self.para.poolNumG1,
                r=self.para.poolRangeG1,
                batch_size=batchSize,
                nodes_n=self.para.vertexNumG1)

            # layer_2: (1)graph generate (2)down sampling and pooling
            Graph_2 = utils.middle_graph_generation(Coor_2,
                                                    batch_size=batchSize,
                                                    M=self.para.vertexNumG2,
                                                    K=self.para.edgeNumG2)
            IndexL2, Coor_3 = utils.farthest_sampling_new(
                Coor_2,
                M=self.para.vertexNumG3,
                k=self.para.poolNumG2,
                r=self.para.poolRangeG2,
                batch_size=batchSize,
                nodes_n=self.para.vertexNumG2)

            # layer_3: (1)graph generate (2)down sampling and pooling
            Graph_3 = utils.middle_graph_generation(Coor_3,
                                                    batch_size=batchSize,
                                                    M=self.para.vertexNumG3,
                                                    K=self.para.edgeNumG3)
            IndexL3, Coor_4 = utils.farthest_sampling_new(
                Coor_3,
                M=self.para.vertexNumG4,
                k=self.para.poolNumG3,
                r=self.para.poolRangeG3,
                batch_size=batchSize,
                nodes_n=self.para.vertexNumG3)

            feed_dict = {
                self.placeholder['isTraining']:
                True,
                self.placeholder['batch_size']:
                batchSize,
                self.placeholder['coordinate']:
                SCoor_1 if self.para.useSphericalPos else Coor_1,
                self.placeholder['label']:
                batchLabel,
                self.placeholder['weights']:
                batchWeight,
                self.placeholder['graph_1']:
                Graph_1,  #for 1st gcn layer graph
                self.placeholder['poolIndex_1']:
                IndexL1,  #for 1st pooling layer
                self.placeholder['graph_2']:
                Graph_2,  #for 2st gcn layer graph
                self.placeholder['poolIndex_2']:
                IndexL2,  #for 2st pooling layer
                self.placeholder['graph_3']:
                Graph_3,  #for 3st gcn layer graph
                self.placeholder['poolIndex_3']:
                IndexL3,  #for 3st pooling layer
            }
            opt, summary = self.sess.run(
                [self.model.opt_op, self.model.summary], feed_dict=feed_dict)

            writer.add_summary(summary, self.train_batch_count)
            print("train epoch:{},batch:{}".format(self.epoch_count,
                                                   batch_count))
            self.train_batch_count += 1
            batch_count += 1
        self.epoch_count += 1
示例#5
0
    def evaluateOneEpoch(self, eval_dataset, weight_dict):
        batchSize = self.para.evalBatchSize
        eval_iter = eval_dataset.iter(batchSize)
        batch_count = 0
        probability_list = []
        label_one_hot_list = []
        batchWeight_list = []
        while True:
            try:
                SCoor_1, Coor_1, Graph_1, batchLabel = next(eval_iter)
            except StopIteration:
                break
            # 为非均匀数据集加入每种对象类型占比
            if self.para.weighting_scheme == 'uniform':
                batchWeight = utils.uniform_weight(batchLabel)
            elif self.para.weighting_scheme == 'weighted':
                batchWeight = utils.weights_calculation(
                    batchLabel, weight_dict)
            else:
                print('please enter a valid weighting scheme')
                batchWeight = utils.uniform_weight(batchLabel)

            # layer_1: (2)down sampling and pooling
            IndexL1, Coor_2 = utils.farthest_sampling_new(
                Coor_1,
                M=self.para.vertexNumG2,
                k=self.para.poolNumG1,
                r=self.para.poolRangeG1,
                batch_size=batchSize,
                nodes_n=self.para.vertexNumG1)

            # layer_2: (1)graph generate (2)down sampling and pooling
            Graph_2 = utils.middle_graph_generation(Coor_2,
                                                    batch_size=batchSize,
                                                    M=self.para.vertexNumG2,
                                                    K=self.para.edgeNumG2)
            IndexL2, Coor_3 = utils.farthest_sampling_new(
                Coor_2,
                M=self.para.vertexNumG3,
                k=self.para.poolNumG2,
                r=self.para.poolRangeG2,
                batch_size=batchSize,
                nodes_n=self.para.vertexNumG2)

            # layer_3: (1)graph generate (2)down sampling and pooling
            Graph_3 = utils.middle_graph_generation(Coor_3,
                                                    batch_size=batchSize,
                                                    M=self.para.vertexNumG3,
                                                    K=self.para.edgeNumG3)
            IndexL3, Coor_4 = utils.farthest_sampling_new(
                Coor_3,
                M=self.para.vertexNumG4,
                k=self.para.poolNumG3,
                r=self.para.poolRangeG3,
                batch_size=batchSize,
                nodes_n=self.para.vertexNumG3)

            feed_dict = {
                self.placeholder['isTraining']:
                False,
                self.placeholder['batch_size']:
                batchSize,
                self.placeholder['coordinate']:
                SCoor_1 if self.para.useSphericalPos else Coor_1,
                self.placeholder['graph_1']:
                Graph_1,  # for 1st gcn layer graph
                self.placeholder['poolIndex_1']:
                IndexL1,  # for 1st pooling layer
                self.placeholder['graph_2']:
                Graph_2,  # for 2st gcn layer graph
                self.placeholder['poolIndex_2']:
                IndexL2,  # for 2st pooling layer
                self.placeholder['graph_3']:
                Graph_3,  # for 3st gcn layer graph
                self.placeholder['poolIndex_3']:
                IndexL3,  # for 3st pooling layer
            }

            probability = self.sess.run(self.model.probability,
                                        feed_dict=feed_dict)

            batchWeight_list.append(batchWeight)
            probability_list.append(probability)
            label_one_hot_list.append(batchLabel)
            print("evaluate epoch:{},batch:{}".format(self.epoch_count - 1,
                                                      batch_count))
            batch_count += 1

        batchWeights = np.concatenate(batchWeight_list)
        probabilitys = np.concatenate(probability_list)
        predicts = np.argmax(probabilitys, axis=1)
        label_one_hots = np.concatenate(label_one_hot_list)
        labels = np.argmax(label_one_hots, axis=1)

        confusion_matrix = sklearn.metrics.confusion_matrix(labels,
                                                            predicts)  #混淆矩阵
        accuracy = sklearn.metrics.accuracy_score(
            labels, predicts, normalize=True,
            sample_weight=batchWeights)  #总准确率
        # precision = sklearn.metrics.precision_score(labels,predicts,average ='macro')                      #查准率 weighted
        # recall = sklearn.metrics.recall_score(labels, predicts, average='macro')                           #查全率
        f1 = sklearn.metrics.f1_score(
            labels, predicts, average='macro')  #查准率和查全率的调和平均,1-best,0-worst
        precision, recall, thresholds = sklearn.metrics.precision_recall_curve(
            label_one_hots.ravel(), probabilitys.ravel())
        fpr, tpr, thresholds = sklearn.metrics.roc_curve(
            label_one_hots.ravel(), probabilitys.ravel())  #ROC曲线图
        auc = sklearn.metrics.auc(fpr, tpr)  #AUC

        print("evaluate epoch:{},accuracy:{:.4f},auc:{:.4f}".format(
            self.epoch_count - 1, accuracy, auc))
        np.savez(self.para.evalDir + 'eval_epoch_' +
                 str(self.epoch_count - 1) + '.npz',
                 confusion_matrix=confusion_matrix,
                 accuracy=accuracy,
                 precision=precision,
                 recall=recall,
                 f1=f1,
                 fpr=fpr,
                 tpr=tpr,
                 auc=auc)