def mode_1(sess, graph, save_path, is_valid=FLAGS.is_valid): """ to collect results Saved Result ------------ results_A_fake_B : float, numpy ndarray, shape=[n_latents=100, n_conditions=128*9, length=100, features=23] Real A + Fake B results_A_real_B : float, numpy ndarray, shape=[n_conditions=128*9, length=100, features=23] Real A + Real B results_critic_scores : float, numpy ndarray, shape=[n_latents=100, n_conditions=128*9] critic scores for each input data """ # placeholder tensor latent_input_t = graph.get_tensor_by_name('latent_input:0') team_a_t = graph.get_tensor_by_name('team_a:0') G_samples_t = graph.get_tensor_by_name('G_samples:0') matched_cond_t = graph.get_tensor_by_name('matched_cond:0') # result tensor result_t = graph.get_tensor_by_name( 'Generator/G_inference/conv_result/conv1d/Maximum:0') # critic_scores_t = graph.get_tensor_by_name( # 'Critic/C_inference_1/conv_output/Reshape:0') critic_scores_t = graph.get_tensor_by_name( 'Critic/C_inference_1/linear_result/BiasAdd:0') if not os.path.exists(save_path): os.makedirs(save_path) real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :] print('real_data.shape', real_data.shape) # normalize data_factory = DataFactory(real_data) # result collector results_A_fake_B = [] results_A_real_B = [] results_critic_scores = [] # shuffle the data train_data, valid_data = data_factory.fetch_data() if is_valid: target_data = valid_data else: target_data = train_data target_data = np.load('ADD-100.npy') team_AB = np.concatenate( [ # ball target_data[:, :, 0, :3].reshape( [target_data.shape[0], target_data.shape[1], 1 * 3]), # team A players target_data[:, :, 1:6, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]), # team B players target_data[:, :, 6:11, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]) ], axis=-1 ) team_AB = data_factory.normalize(team_AB) print(team_AB.shape) dummy_AB = np.zeros(shape=[98, 100, 23]) team_AB = np.concatenate([team_AB, dummy_AB], axis=0) team_A = team_AB[:, :, :13] team_B = team_AB[:, :, 13:] # for idx in range(0, FLAGS.batch_size, FLAGS.batch_size): real_samples = team_B real_conds = team_A # generate result temp_critic_scores = [] temp_A_fake_B = [] for i in range(FLAGS.n_latents): latents = z_samples(FLAGS.batch_size) feed_dict = { latent_input_t: latents, team_a_t: real_conds } result = sess.run( result_t, feed_dict=feed_dict) feed_dict = { G_samples_t: result, matched_cond_t: real_conds } critic_scores = sess.run( critic_scores_t, feed_dict=feed_dict) temp_A_fake_B.append(data_factory.recover_data( np.concatenate([real_conds, result], axis=-1))) temp_critic_scores.append(critic_scores) results_A_fake_B.append(temp_A_fake_B) results_critic_scores.append(temp_critic_scores) # concat along with conditions dimension (axis=1) results_A_fake_B = np.concatenate(results_A_fake_B, axis=1) results_critic_scores = np.concatenate(results_critic_scores, axis=1) results_A = data_factory.recover_BALL_and_A( real_conds) results_real_B = data_factory.recover_B( real_samples) results_A_real_B = np.concatenate([results_A, results_real_B], axis=-1) # saved as numpy print(np.array(results_A_fake_B).shape) print(np.array(results_A_real_B).shape) print(np.array(results_critic_scores).shape) np.save(save_path + 'results_A_fake_B.npy', np.array(results_A_fake_B)[:, :30].astype(np.float32).reshape([FLAGS.n_latents, 30, FLAGS.seq_length, 23])) np.save(save_path + 'results_A_real_B.npy', np.array(results_A_real_B)[:30].astype(np.float32).reshape([30, FLAGS.seq_length, 23])) np.save(save_path + 'results_critic_scores.npy', np.array(results_critic_scores)[:, :30].astype(np.float32).reshape([FLAGS.n_latents, 30])) print('!!Completely Saved!!')
def mode_4(sess, graph, save_path, is_valid=FLAGS.is_valid): """ to analize code, only change first dimension for comparison Saved Result ------------ results_A_fake_B : float, numpy ndarray, shape=[n_latents=11, n_conditions=128*9, length=100, features=23] Real A + Fake B results_A_real_B : float, numpy ndarray, shape=[n_latents=11, n_conditions=128*9, length=100, features=23] Real A + Real B results_critic_scores : float, numpy ndarray, shape=[n_latents=11, n_conditions=128*9] critic scores for each input data """ target_dims = 0 n_latents = 11 # placeholder tensor latent_input_t = graph.get_tensor_by_name('latent_input:0') team_a_t = graph.get_tensor_by_name('team_a:0') G_samples_t = graph.get_tensor_by_name('G_samples:0') matched_cond_t = graph.get_tensor_by_name('matched_cond:0') # result tensor result_t = graph.get_tensor_by_name( 'Generator/G_inference/conv_result/conv1d/Maximum:0') critic_scores_t = graph.get_tensor_by_name( 'Critic/C_inference_1/linear_result/BiasAdd:0') # 'Generator/G_loss/C_inference/linear_result/Reshape:0') if not os.path.exists(save_path): os.makedirs(save_path) real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :] print('real_data.shape', real_data.shape) # normalize data_factory = DataFactory(real_data) # result collector results_A_fake_B = [] results_A_real_B = [] results_critic_scores = [] # shuffle the data train_data, valid_data = data_factory.fetch_data() if is_valid: target_data = valid_data else: target_data = train_data latents = z_samples(FLAGS.batch_size) for idx in range(0, FLAGS.n_conditions, FLAGS.batch_size): real_samples = target_data['B'][idx:idx + FLAGS.batch_size] real_conds = target_data['A'][idx:idx + FLAGS.batch_size] # generate result temp_critic_scores = [] temp_A_fake_B = [] for i in range(n_latents): latents[:, target_dims] = -2.5 + 0.5 * i feed_dict = { latent_input_t: latents, team_a_t: real_conds } result = sess.run( result_t, feed_dict=feed_dict) feed_dict = { G_samples_t: result, matched_cond_t: real_conds } critic_scores = sess.run( critic_scores_t, feed_dict=feed_dict) temp_A_fake_B.append(data_factory.recover_data( np.concatenate([real_conds, result], axis=-1))) temp_critic_scores.append(critic_scores) results_A_fake_B.append(temp_A_fake_B) results_critic_scores.append(temp_critic_scores) # concat along with conditions dimension (axis=1) results_A_fake_B = np.concatenate(results_A_fake_B, axis=1) results_critic_scores = np.concatenate(results_critic_scores, axis=1) results_A = data_factory.recover_BALL_and_A( target_data['A'][:FLAGS.n_conditions]) results_real_B = data_factory.recover_B( target_data['B'][:FLAGS.n_conditions]) results_A_real_B = np.concatenate([results_A, results_real_B], axis=-1) # saved as numpy print(np.array(results_A_fake_B).shape) print(np.array(results_A_real_B).shape) print(np.array(results_critic_scores).shape) np.save(save_path + 'results_A_fake_B.npy', np.array(results_A_fake_B).astype(np.float32).reshape([n_latents, FLAGS.n_conditions, FLAGS.seq_length, 23])) np.save(save_path + 'results_A_real_B.npy', np.array(results_A_real_B).astype(np.float32).reshape([FLAGS.n_conditions, FLAGS.seq_length, 23])) np.save(save_path + 'results_critic_scores.npy', np.array(results_critic_scores).astype(np.float32).reshape([n_latents, FLAGS.n_conditions])) print('!!Completely Saved!!')
def rnn(): """ to collect results vary in length Saved Result ------------ results_A_fake_B : float, numpy ndarray, shape=[n_latents=100, n_conditions=100, length=100, features=23] Real A + Fake B results_A_real_B : float, numpy ndarray, shape=[n_conditions=100, length=100, features=23] Real A + Real B results_critic_scores : float, numpy ndarray, shape=[n_latents=100, n_conditions=100] critic scores for each input data """ save_path = os.path.join(COLLECT_PATH, 'rnn') if not os.path.exists(save_path): os.makedirs(save_path) real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :] print('real_data.shape', real_data.shape) # DataFactory data_factory = DataFactory(real_data) # target data target_data = np.load('../../data/FixedFPS5.npy')[-100:] target_length = np.load('../../data/FixedFPS5Length.npy')[-100:] print('target_data.shape', target_data.shape) team_AB = np.concatenate( [ # ball target_data[:, :, 0, :3].reshape( [target_data.shape[0], target_data.shape[1], 1 * 3]), # team A players target_data[:, :, 1:6, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]), # team B players target_data[:, :, 6:11, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]) ], axis=-1 ) team_AB = data_factory.normalize(team_AB) team_A = team_AB[:, :, :13] team_B = team_AB[:, :, 13:] # result collector results_A_fake_B = [] results_A_real_B = [] config = TrainingConfig(235) with tf.get_default_graph().as_default() as graph: # model C = C_MODEL(config, graph) G = G_MODEL(config, C.inference, graph) tfconfig = tf.ConfigProto() tfconfig.gpu_options.allow_growth = True default_sess = tf.Session(config=tfconfig, graph=graph) # saver for later restore saver = tf.train.Saver(max_to_keep=0) # 0 -> keep them all # restore model if exist saver.restore(default_sess, FLAGS.restore_path) print('successfully restore model from checkpoint: %s' % (FLAGS.restore_path)) for idx in range(team_AB.shape[0]): # given 100(FLAGS.n_latents) latents generate 100 results on same condition at once real_samples = team_B[idx:idx + 1, :] real_samples = np.concatenate( [real_samples for _ in range(FLAGS.n_latents)], axis=0) real_conds = team_A[idx:idx + 1, :] real_conds = np.concatenate( [real_conds for _ in range(FLAGS.n_latents)], axis=0) # generate result latents = z_samples(FLAGS.n_latents) result = G.generate(default_sess, latents, real_conds) # calculate em distance recoverd_A_fake_B = data_factory.recover_data( np.concatenate([real_conds, result], axis=-1)) # padding to length=200 dummy = np.zeros( shape=[FLAGS.n_latents, team_AB.shape[1] - target_length[idx], team_AB.shape[2]]) temp_A_fake_B_concat = np.concatenate( [recoverd_A_fake_B[:, :target_length[idx]], dummy], axis=1) results_A_fake_B.append(temp_A_fake_B_concat) print(np.array(results_A_fake_B).shape) # concat along with conditions dimension (axis=1) results_A_fake_B = np.stack(results_A_fake_B, axis=1) # real data results_A = data_factory.recover_BALL_and_A(team_A) results_real_B = data_factory.recover_B(team_B) results_A_real_B = data_factory.recover_data(team_AB) # saved as numpy print(np.array(results_A_fake_B).shape) print(np.array(results_A_real_B).shape) np.save(os.path.join(save_path, 'results_A_fake_B.npy'), np.array(results_A_fake_B).astype(np.float32).reshape([FLAGS.n_latents, team_AB.shape[0], team_AB.shape[1], 23])) np.save(os.path.join(save_path, 'results_A_real_B.npy'), np.array(results_A_real_B).astype(np.float32).reshape([team_AB.shape[0], team_AB.shape[1], 23])) print('!!Completely Saved!!')
def mode_9(sess, graph, save_path, is_valid=FLAGS.is_valid): """ to collect results vary in length Saved Result ------------ results_A_fake_B : float, numpy ndarray, shape=[n_latents=100, n_conditions=100, length=100, features=23] Real A + Fake B results_A_real_B : float, numpy ndarray, shape=[n_conditions=100, length=100, features=23] Real A + Real B results_critic_scores : float, numpy ndarray, shape=[n_latents=100, n_conditions=100] critic scores for each input data """ # placeholder tensor latent_input_t = graph.get_tensor_by_name('Generator/latent_input:0') team_a_t = graph.get_tensor_by_name('Generator/team_a:0') G_samples_t = graph.get_tensor_by_name('Critic/G_samples:0') matched_cond_t = graph.get_tensor_by_name('Critic/matched_cond:0') # result tensor result_t = graph.get_tensor_by_name( 'Generator/G_inference/conv_result/conv1d/Maximum:0') critic_scores_t = graph.get_tensor_by_name( 'Critic/C_inference_1/conv_output/Reshape:0') if not os.path.exists(save_path): os.makedirs(save_path) real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :] print('real_data.shape', real_data.shape) # DataFactory data_factory = DataFactory(real_data) # target data target_data = np.load('../../data/FixedFPS5.npy')[-100:] target_length = np.load('../../data/FixedFPS5Length.npy')[-100:] print('target_data.shape', target_data.shape) team_AB = np.concatenate( [ # ball target_data[:, :, 0, :3].reshape( [target_data.shape[0], target_data.shape[1], 1 * 3]), # team A players target_data[:, :, 1:6, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]), # team B players target_data[:, :, 6:11, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]) ], axis=-1) team_AB = data_factory.normalize(team_AB) team_A = team_AB[:, :, :13] team_B = team_AB[:, :, 13:] # result collector results_A_fake_B = [] results_A_real_B = [] results_critic_scores = [] for idx in range(team_AB.shape[0]): # given 100(FLAGS.n_latents) latents generate 100 results on same condition at once real_samples = team_B[idx:idx + 1, :target_length[idx]] real_samples = np.concatenate( [real_samples for _ in range(FLAGS.n_latents)], axis=0) real_conds = team_A[idx:idx + 1, :target_length[idx]] real_conds = np.concatenate( [real_conds for _ in range(FLAGS.n_latents)], axis=0) # generate result latents = z_samples(FLAGS.n_latents) feed_dict = {latent_input_t: latents, team_a_t: real_conds} result = sess.run(result_t, feed_dict=feed_dict) # calculate em distance feed_dict = {G_samples_t: result, matched_cond_t: real_conds} em_dist = sess.run(critic_scores_t, feed_dict=feed_dict) recoverd_A_fake_B = data_factory.recover_data( np.concatenate([real_conds, result], axis=-1)) # padding to length=200 dummy = np.zeros(shape=[ FLAGS.n_latents, team_AB.shape[1] - target_length[idx], team_AB.shape[2] ]) temp_A_fake_B_concat = np.concatenate([recoverd_A_fake_B, dummy], axis=1) results_A_fake_B.append(temp_A_fake_B_concat) results_critic_scores.append(em_dist) print(np.array(results_A_fake_B).shape) print(np.array(results_critic_scores).shape) # concat along with conditions dimension (axis=1) results_A_fake_B = np.stack(results_A_fake_B, axis=1) results_critic_scores = np.stack(results_critic_scores, axis=1) # real data results_A = data_factory.recover_BALL_and_A(team_A) results_real_B = data_factory.recover_B(team_B) results_A_real_B = data_factory.recover_data(team_AB) # saved as numpy print(np.array(results_A_fake_B).shape) print(np.array(results_A_real_B).shape) print(np.array(results_critic_scores).shape) np.save( save_path + 'results_A_fake_B.npy', np.array(results_A_fake_B).astype(np.float32).reshape( [FLAGS.n_latents, team_AB.shape[0], team_AB.shape[1], 23])) np.save( save_path + 'results_A_real_B.npy', np.array(results_A_real_B).astype(np.float32).reshape( [team_AB.shape[0], team_AB.shape[1], 23])) np.save( save_path + 'results_critic_scores.npy', np.array(results_critic_scores).astype(np.float32).reshape( [FLAGS.n_latents, team_AB.shape[0]])) print('!!Completely Saved!!')