class DSSM(object): def __init__(self, dnn_dims=[], vocab_sizes=[], model_type=ModelType.create_classification(), model_arch=ModelArch.create_cnn(), share_semantic_generator=False, class_num=None, share_embed=False, is_infer=False): """ :param dnn_dims: The dimention of each layer in the semantic vector generator. :type dnn_dims: list of int :param vocab_sizes: The size of left and right items. :type vocab_sizes: A list having 2 elements. :param model_type: The type of task to train the DSSM model. The value should be "rank: 0", "regression: 1" or "classification: 2". :type model_type: int :param model_arch: A value indicating the model architecture to use. :type model_arch: int :param share_semantic_generator: A flag indicating whether to share the semantic vector between the left and the right item. :type share_semantic_generator: bool :param share_embed: A floag indicating whether to share the embeddings between the left and the right item. :type share_embed: bool :param class_num: The number of categories. :type class_num: int """ assert len(vocab_sizes) == 2, ( "The vocab_sizes specifying the sizes left and right inputs. " "Its dimension should be 2.") assert len(dnn_dims) > 1, ("In the DNN model, more than two layers " "are needed.") self.dnn_dims = dnn_dims self.vocab_sizes = vocab_sizes self.share_semantic_generator = share_semantic_generator self.share_embed = share_embed self.model_type = ModelType(model_type) self.model_arch = ModelArch(model_arch) self.class_num = class_num self.is_infer = is_infer logger.warning("Build DSSM model with config of %s, %s" % (self.model_type, self.model_arch)) logger.info("The vocabulary size is : %s" % str(self.vocab_sizes)) # bind model architecture _model_arch = { "cnn": self.create_cnn, "fc": self.create_fc, "rnn": self.create_rnn, } def _model_arch_creater(emb, prefix=""): sent_vec = _model_arch.get(str(model_arch))(emb, prefix) dnn = self.create_dnn(sent_vec, prefix) return dnn self.model_arch_creater = _model_arch_creater _model_type = { "classification": self._build_classification_model, "rank": self._build_rank_model, "regression": self._build_regression_model, } print("model type: ", str(self.model_type)) self.model_type_creater = _model_type[str(self.model_type)] def __call__(self): return self.model_type_creater() def create_embedding(self, input, prefix=""): """ Create word embedding. The `prefix` is added in front of the name of embedding"s learnable parameter. """ logger.info("Create embedding table [%s] whose dimention is %d. " % (prefix, self.dnn_dims[0])) emb = paddle.layer.embedding(input=input, size=self.dnn_dims[0], param_attr=ParamAttr(name="%s_emb.w" % prefix)) return emb def create_fc(self, emb, prefix=""): """ A multi-layer fully connected neural networks. :param emb: The output of the embedding layer :type emb: paddle.layer :param prefix: A prefix will be added to the layers' names. :type prefix: str """ _input_layer = paddle.layer.pooling(input=emb, pooling_type=paddle.pooling.Max()) fc = paddle.layer.fc(input=_input_layer, size=self.dnn_dims[1], param_attr=ParamAttr(name="%s_fc.w" % prefix), bias_attr=ParamAttr(name="%s_fc.b" % prefix, initial_std=0.)) return fc def create_rnn(self, emb, prefix=""): """ A GRU sentence vector learner. """ gru = paddle.networks.simple_gru( input=emb, size=self.dnn_dims[1], mixed_param_attr=ParamAttr(name="%s_gru_mixed.w" % prefix), mixed_bias_param_attr=ParamAttr(name="%s_gru_mixed.b" % prefix), gru_param_attr=ParamAttr(name="%s_gru.w" % prefix), gru_bias_attr=ParamAttr(name="%s_gru.b" % prefix)) sent_vec = paddle.layer.last_seq(gru) return sent_vec def create_cnn(self, emb, prefix=""): """ A multi-layer CNN. :param emb: The word embedding. :type emb: paddle.layer :param prefix: The prefix will be added to of layers' names. :type prefix: str """ def create_conv(context_len, hidden_size, prefix): key = "%s_%d_%d" % (prefix, context_len, hidden_size) conv = paddle.networks.sequence_conv_pool( input=emb, context_len=context_len, hidden_size=hidden_size, # set parameter attr for parameter sharing context_proj_param_attr=ParamAttr(name=key + "contex_proj.w"), fc_param_attr=ParamAttr(name=key + "_fc.w"), fc_bias_attr=ParamAttr(name=key + "_fc.b"), pool_bias_attr=ParamAttr(name=key + "_pool.b")) return conv logger.info("create a sequence_conv_pool whose context width is 3.") conv_3 = create_conv(3, self.dnn_dims[1], "cnn") logger.info("create a sequence_conv_pool whose context width is 4.") conv_4 = create_conv(4, self.dnn_dims[1], "cnn") return paddle.layer.concat(input=[conv_3, conv_4]) def create_dnn(self, sent_vec, prefix): # if more than three layers, than a fc layer will be added. if len(self.dnn_dims) > 1: _input_layer = sent_vec for id, dim in enumerate(self.dnn_dims[1:]): name = "%s_fc_%d_%d" % (prefix, id, dim) logger.info("create fc layer [%s] which dimention is %d" % (name, dim)) fc = paddle.layer.fc(input=_input_layer, size=dim, act=paddle.activation.Tanh(), param_attr=ParamAttr(name="%s.w" % name), bias_attr=ParamAttr(name="%s.b" % name, initial_std=0.)) _input_layer = fc return _input_layer def _build_classification_model(self): logger.info("build classification model") assert self.model_type.is_classification() return self._build_classification_or_regression_model( is_classification=True) def _build_regression_model(self): logger.info("build regression model") assert self.model_type.is_regression() return self._build_classification_or_regression_model( is_classification=False) def _build_rank_model(self): """ Build a pairwise rank model, and the cost is returned. A pairwise rank model has 3 inputs: - source sentence - left_target sentence - right_target sentence - label, 1 if left_target should be sorted in front of right_target, otherwise 0. """ logger.info("build rank model") assert self.model_type.is_rank() source = paddle.layer.data( name="source_input", type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0])) left_target = paddle.layer.data( name="left_target_input", type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1])) right_target = paddle.layer.data( name="right_target_input", type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1])) if not self.is_infer: label = paddle.layer.data(name="label_input", type=paddle.data_type.integer_value(1)) prefixs = "_ _ _".split( ) if self.share_semantic_generator else "source target target".split() embed_prefixs = "_ _ _".split( ) if self.share_embed else "source target target".split() word_vecs = [] for id, input in enumerate([source, left_target, right_target]): x = self.create_embedding(input, prefix=embed_prefixs[id]) word_vecs.append(x) semantics = [] for id, input in enumerate(word_vecs): x = self.model_arch_creater(input, prefix=prefixs[id]) semantics.append(x) # The cosine similarity score of source and left_target. left_score = paddle.layer.cos_sim(semantics[0], semantics[1]) # The cosine similarity score of source and right target. right_score = paddle.layer.cos_sim(semantics[0], semantics[2]) if not self.is_infer: # rank cost cost = paddle.layer.rank_cost(left_score, right_score, label=label) # prediction = left_score - right_score # but this operator is not supported currently. # so AUC will not used. return cost, None, label return right_score def _build_classification_or_regression_model(self, is_classification): """ Build a classification/regression model, and the cost is returned. The classification/regression task expects 3 inputs: - source sentence - target sentence - classification label """ if is_classification: assert self.class_num source = paddle.layer.data( name="source_input", type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0])) target = paddle.layer.data( name="target_input", type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1])) label = paddle.layer.data( name="label_input", type=paddle.data_type.integer_value(self.class_num) if is_classification else paddle.data_type.dense_vector(1)) prefixs = "_ _".split( ) if self.share_semantic_generator else "source target".split() embed_prefixs = "_ _".split( ) if self.share_embed else "source target".split() word_vecs = [] for id, input in enumerate([source, target]): x = self.create_embedding(input, prefix=embed_prefixs[id]) word_vecs.append(x) semantics = [] for id, input in enumerate(word_vecs): x = self.model_arch_creater(input, prefix=prefixs[id]) semantics.append(x) if is_classification: concated_vector = paddle.layer.concat(semantics) prediction = paddle.layer.fc(input=concated_vector, size=self.class_num, act=paddle.activation.Softmax()) cost = paddle.layer.classification_cost(input=prediction, label=label) else: prediction = paddle.layer.cos_sim(*semantics) cost = paddle.layer.square_error_cost(prediction, label) if not self.is_infer: return cost, prediction, label return prediction
class DSSM(object): def __init__(self, dnn_dims=[], vocab_sizes=[], model_type=ModelType.create_classification(), model_arch=ModelArch.create_cnn(), share_semantic_generator=False, class_num=None, share_embed=False, is_infer=False): ''' @dnn_dims: list of int dimentions of each layer in semantic vector generator. @vocab_sizes: 2-d tuple size of both left and right items. @model_type: int type of task, should be 'rank: 0', 'regression: 1' or 'classification: 2' @model_arch: int model architecture @share_semantic_generator: bool whether to share the semantic vector generator for both left and right. @share_embed: bool whether to share the embeddings between left and right. @class_num: int number of categories. ''' assert len( vocab_sizes ) == 2, "vocab_sizes specify the sizes left and right inputs, and dim should be 2." assert len(dnn_dims) > 1, "more than two layers is needed." self.dnn_dims = dnn_dims self.vocab_sizes = vocab_sizes self.share_semantic_generator = share_semantic_generator self.share_embed = share_embed self.model_type = ModelType(model_type) self.model_arch = ModelArch(model_arch) self.class_num = class_num self.is_infer = is_infer logger.warning("build DSSM model with config of %s, %s" % (self.model_type, self.model_arch)) logger.info("vocabulary sizes: %s" % str(self.vocab_sizes)) # bind model architecture _model_arch = { 'cnn': self.create_cnn, 'fc': self.create_fc, 'rnn': self.create_rnn, } def _model_arch_creater(emb, prefix=''): sent_vec = _model_arch.get(str(model_arch))(emb, prefix) dnn = self.create_dnn(sent_vec, prefix) return dnn self.model_arch_creater = _model_arch_creater # build model type _model_type = { 'classification': self._build_classification_model, 'rank': self._build_rank_model, 'regression': self._build_regression_model, } print 'model type: ', str(self.model_type) self.model_type_creater = _model_type[str(self.model_type)] def __call__(self): return self.model_type_creater() def create_embedding(self, input, prefix=''): ''' Create an embedding table whose name has a `prefix`. ''' logger.info("create embedding table [%s] which dimention is %d" % (prefix, self.dnn_dims[0])) emb = paddle.layer.embedding( input=input, size=self.dnn_dims[0], param_attr=ParamAttr(name='%s_emb.w' % prefix)) return emb def create_fc(self, emb, prefix=''): ''' A multi-layer fully connected neural networks. @emb: paddle.layer output of the embedding layer @prefix: str prefix of layers' names, used to share parameters between more than one `fc` parts. ''' _input_layer = paddle.layer.pooling( input=emb, pooling_type=paddle.pooling.Max()) fc = paddle.layer.fc(input=_input_layer, size=self.dnn_dims[1]) return fc def create_rnn(self, emb, prefix=''): ''' A GRU sentence vector learner. ''' gru = paddle.networks.simple_gru(input=emb, size=256) sent_vec = paddle.layer.last_seq(gru) return sent_vec def create_cnn(self, emb, prefix=''): ''' A multi-layer CNN. @emb: paddle.layer output of the embedding layer @prefix: str prefix of layers' names, used to share parameters between more than one `cnn` parts. ''' def create_conv(context_len, hidden_size, prefix): key = "%s_%d_%d" % (prefix, context_len, hidden_size) conv = paddle.networks.sequence_conv_pool( input=emb, context_len=context_len, hidden_size=hidden_size, # set parameter attr for parameter sharing context_proj_param_attr=ParamAttr(name=key + 'contex_proj.w'), fc_param_attr=ParamAttr(name=key + '_fc.w'), fc_bias_attr=ParamAttr(name=key + '_fc.b'), pool_bias_attr=ParamAttr(name=key + '_pool.b')) return conv logger.info('create a sequence_conv_pool which context width is 3') conv_3 = create_conv(3, self.dnn_dims[1], "cnn") logger.info('create a sequence_conv_pool which context width is 4') conv_4 = create_conv(4, self.dnn_dims[1], "cnn") return conv_3, conv_4 def create_dnn(self, sent_vec, prefix): # if more than three layers, than a fc layer will be added. if len(self.dnn_dims) > 1: _input_layer = sent_vec for id, dim in enumerate(self.dnn_dims[1:]): name = "%s_fc_%d_%d" % (prefix, id, dim) logger.info("create fc layer [%s] which dimention is %d" % (name, dim)) fc = paddle.layer.fc( name=name, input=_input_layer, size=dim, act=paddle.activation.Tanh(), param_attr=ParamAttr(name='%s.w' % name), bias_attr=ParamAttr(name='%s.b' % name)) _input_layer = fc return _input_layer def _build_classification_model(self): logger.info("build classification model") assert self.model_type.is_classification() return self._build_classification_or_regression_model( is_classification=True) def _build_regression_model(self): logger.info("build regression model") assert self.model_type.is_regression() return self._build_classification_or_regression_model( is_classification=False) def _build_rank_model(self): ''' Build a pairwise rank model, and the cost is returned. A pairwise rank model has 3 inputs: - source sentence - left_target sentence - right_target sentence - label, 1 if left_target should be sorted in front of right_target, otherwise 0. ''' logger.info("build rank model") assert self.model_type.is_rank() source = paddle.layer.data( name='source_input', type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0])) left_target = paddle.layer.data( name='left_target_input', type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1])) right_target = paddle.layer.data( name='right_target_input', type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1])) if not self.is_infer: label = paddle.layer.data( name='label_input', type=paddle.data_type.integer_value(1)) prefixs = '_ _ _'.split( ) if self.share_semantic_generator else 'source left right'.split() embed_prefixs = '_ _'.split( ) if self.share_embed else 'source target target'.split() word_vecs = [] for id, input in enumerate([source, left_target, right_target]): x = self.create_embedding(input, prefix=embed_prefixs[id]) word_vecs.append(x) semantics = [] for id, input in enumerate(word_vecs): x = self.model_arch_creater(input, prefix=prefixs[id]) semantics.append(x) # cossim score of source and left_target left_score = paddle.layer.cos_sim(semantics[0], semantics[1]) # cossim score of source and right target right_score = paddle.layer.cos_sim(semantics[0], semantics[2]) if not self.is_infer: # rank cost cost = paddle.layer.rank_cost(left_score, right_score, label=label) # prediction = left_score - right_score # but this operator is not supported currently. # so AUC will not used. return cost, None, label return right_score def _build_classification_or_regression_model(self, is_classification): ''' Build a classification/regression model, and the cost is returned. A Classification has 3 inputs: - source sentence - target sentence - classification label ''' if is_classification: # prepare inputs. assert self.class_num source = paddle.layer.data( name='source_input', type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0])) target = paddle.layer.data( name='target_input', type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1])) label = paddle.layer.data( name='label_input', type=paddle.data_type.integer_value(self.class_num) if is_classification else paddle.data_type.dense_vector(1)) prefixs = '_ _'.split( ) if self.share_semantic_generator else 'left right'.split() embed_prefixs = '_ _'.split( ) if self.share_embed else 'left right'.split() word_vecs = [] for id, input in enumerate([source, target]): x = self.create_embedding(input, prefix=embed_prefixs[id]) word_vecs.append(x) semantics = [] for id, input in enumerate(word_vecs): x = self.model_arch_creater(input, prefix=prefixs[id]) semantics.append(x) if is_classification: concated_vector = paddle.layer.concat(semantics) prediction = paddle.layer.fc( input=concated_vector, size=self.class_num, act=paddle.activation.Softmax()) cost = paddle.layer.classification_cost( input=prediction, label=label) else: prediction = paddle.layer.cos_sim(*semantics) cost = paddle.layer.square_error_cost(prediction, label) if not self.is_infer: return cost, prediction, label return prediction