def show_stack_info(model): p = Plotter(ax_num=4) lb = LabelBinarizer() #load spectrum spec = np.load(args['stack'])[args['index']] #classify spectrum p1, p2, p_stack = classify(model, spec, lb) #load true stack parameters name = args['stack'].split("/")[-1][:-4] batch_dir_list = args['stack'].split("/")[:-2] batch_dir = "" for f in batch_dir_list: batch_dir += f batch_dir += "/" with open(f"{batch_dir}params/{name}.pickle", "rb") as f: stack_params = pickle.load(f) t1, t2, t_stack = stack_params[args['index']] pred_text = p.write_text(p1, p2, p_stack, loss_val=0) true_text = p.write_text(t1, t2, t_stack, loss_val=0) p.double_spec(spec, pred_text, true_text) plt.show()
def NN_test_loop(crawler, lb): while True: while True: spectrum, true1, true2, true_stack = create_random_stack( crawler, param_dict) if np.max(spectrum) > 0.1: break l1, l2, stack = classify(model, spectrum, lb) plotter = Plotter(ax3_on=True) pred_text = plotter.write_text(l1, l2, stack, loss_val=0) true_text = plotter.write_text(true1, true2, true_stack, loss_val=0) plotter.double_text(spectrum, pred_text, true_text) plt.show()