示例#1
0
def update_price(ticker, interval, size, chk_for_duplicate=True):

    count_duplicate = 0
    count_create = 0

    df_prices = av.get_prices(cfg.AV_APIKEY, ticker, interval, size)

    if chk_for_duplicate:
        for i in range(0, len(df_prices)):

            if not pg.is_price_duplicate(ticker, interval,
                                         df_prices[pg._COL_DATETIME][i]):

                print(
                    f'{ticker} ({interval}) price on {str(df_prices[pg._COL_DATETIME][i])} created : {df_prices.iloc[i, :].values}'
                )
                pg.create_prices([df_prices.iloc[i, :].values])
                count_create += 1

            else:

                print(
                    f'Duplicate {ticker} ({interval}) price on {str(df_prices[pg._COL_DATETIME][i])}'
                )
                count_duplicate += 1
    else:
        # To be used for batch imports or initialization
        pg.create_prices(df_prices.values)

    return count_create, count_duplicate
示例#2
0
def update_price(ticker, interval, size):

    count_duplicate = 0
    count_create = 0

    df_prices = av.get_prices(cfg.AV_APIKEY, ticker, interval, size)

    for i in range(0, len(df_prices)):

        if not pg.is_price_duplicate(ticker, interval,
                                     df_prices[pg._COL_DATETIME][i]):

            print(
                f'{ticker} ({interval}) price on {str(df_prices[pg._COL_DATETIME][i])} created : {df_prices.iloc[i, :].values}'
            )
            pg.create_prices([df_prices.iloc[i, :].values])
            count_create += 1

        else:

            print(
                f'Duplicate {ticker} ({interval}) price on {str(df_prices[pg._COL_DATETIME][i])}'
            )
            count_duplicate += 1

    return count_create, count_duplicate
示例#3
0
文件: main.py 项目: hakngrow/capstone
def get_prices_with_features(ticker, interval, start, end, limit):

    if ticker is None:
        return 'Missing parameter: ticker'

    if interval is None:
        return 'Missing parameter: interval'

    if start is not None:
        error = is_datetime_string(start)

        if error is not None:
            return error
    else:
        return 'Missing parameter: ' + _PARAM_START

    if end is not None:
        error = is_datetime_string(end)

        if error is not None:
            return error

    if limit is not None:
        error = is_integer_string(limit)

        if error is not None:
            return error

    prices = pg.get_prices_with_features(ticker, interval, start, end, limit)

    return prices.to_html()
示例#4
0
文件: main.py 项目: hakngrow/capstone
def get_prices_from_database(ticker, interval, start, end, limit):

    if ticker is None:
        return 'Missing parameter: ' + _PARAM_TICKER

    if interval is None:
        return 'Missing parameter: ' + _PARAM_INTERVAL

    if start is not None:
        error = is_datetime_string(start)

        if error is not None:
            return error
    else:
        return 'Missing parameter: ' + _PARAM_START

    if end is not None:
        error = is_datetime_string(end)

        if error is not None:
            return error

    if limit is not None:
        error = is_integer_string(limit)

        if error is not None:
            return error

    prices = pg.get_prices(ticker, interval, start, end, limit)

    return prices.to_html()
示例#5
0
def update_date_features(ticker, interval, start_date, end_date):

    price_dates = pg.get_price_dates(ticker, interval, start_date, end_date)

    if start_date is None and end_date is None:
        print(f'{len(price_dates)} {ticker} ({interval}) prices found.')
    elif start_date is not None and end_date is None:
        print(
            f'{len(price_dates)} {ticker} ({interval}) prices on {start_date} found.'
        )
    elif start_date is not None and end_date is not None:
        print(
            f'{len(price_dates)} {ticker} ({interval}) prices between [{start_date}, {end_date}] found.'
        )

    features_array = []
    count_duplicate = 0
    count_create = 0

    for i in range(0, len(price_dates)):

        if pg.get_features_by_price_id(price_dates[i][0]) is None:

            features = fe.get_date_features(price_dates[i][1])

            print(
                f'{ticker} ({interval}) features on {price_dates[i][1]} created: {features}'
            )

            features_array.append([price_dates[i][0], \
                                   features[0], features[1], features[2], \
                                   features[3], features[4], features[5], \
                                   int(features[6][0]), int(features[6][1]), int(features[7][0]), int(features[7][1]), \
                                   int(features[8][0]), int(features[8][1]), int(features[9][0]), int(features[9][0])])
            count_create += 1

        else:

            print(
                f'Duplicate {ticker} ({interval}) features on {price_dates[i][1]}'
            )
            count_duplicate += 1

    pg.create_features(features_array)

    return count_create, count_duplicate
示例#6
0
文件: main.py 项目: hakngrow/capstone
def get_symbol(ticker):

    if ticker is None:
        return 'Missing parameter: ' + _PARAM_TICKER

    name = pg.get_symbol_name(ticker)

    if name is None:
        return f'Symbol with ticker {ticker} NOT found!'
    else:
        return name[0]
示例#7
0
文件: main.py 项目: hakngrow/capstone
def get_all_symbols():

    symbols = pg.get_symbols()

    if symbols is None:
        return 'No symbols found!'
    else:
        df = pd.DataFrame(symbols, columns=[pg._COL_NAME, pg._COL_TICKER])

        print(df.info())

        return df.to_html()
示例#8
0
文件: main.py 项目: hakngrow/capstone
def get_features(ticker, interval, start, end):

    if ticker is None:
        return 'Missing parameter: ' + _PARAM_TICKER

    if interval is None:
        return 'Missing parameter: ' + _PARAM_INTERVAL

    if start is not None:
        error = is_datetime_string(start)

        if error is not None:
            return error

    if end is not None:
        error = is_datetime_string(end)

        if error is not None:
            return error

    df_features = pg.get_features_by_datetime(ticker, interval, start, end)

    return pd.DataFrame(df_features).to_html()
示例#9
0
import dash_core_components as dcc
import dash_html_components as html

from dash.dependencies import Output, Input

import random

import plotly
import plotly.graph_objs as go

from collections import deque

import utils.AlphaVantageUtils as av
import utils.PostgresUtils as pg

df_prices = pg.get_prices(av._TIC_MICROSOFT, av._INT_DAILY)

cols = [pg._COL_OPEN, pg._COL_HIGH, pg._COL_LOW, pg._COL_CLOSE]

arr_ohlc = df_prices.iloc[0:20, ][cols].values
arr_date = df_prices.iloc[0:20, ][pg._COL_DATETIME].values

X = deque(arr_ohlc, maxlen=20)
Y = deque(arr_date, maxlen=20)

next_price_idx = 20
max_price_idx = len(df_prices)

app = dash.Dash(__name__)
app.layout = html.Div([
    dcc.Graph(id='live-graph', animate=True),
示例#10
0
import numpy as np
import pandas as pd

import dash
import dash_core_components as dcc
import dash_html_components as html

from sklearn.linear_model import LinearRegression

import utils.AlphaVantageUtils as av
import utils.PostgresUtils as pg
import utils.ModelUtils as mdl

name = pg.get_symbol_name(av._TIC_MICROSOFT)
df_prices = pg.get_prices_with_features(av._TIC_MICROSOFT, av._INT_DAILY, None,
                                        None, None)

df_prices.drop(columns=['open', 'high', 'low', 'volume'], inplace=True)

print(df_prices.info())

df_train, df_test = mdl.train_test_split(df_prices, 1000)

predictions = []

train = df_train.drop(pg._COL_DATETIME, axis=1)
test = df_test.drop(pg._COL_DATETIME, axis=1)

print(train.shape)
print(test.shape)
示例#11
0
def get_symbol_options():

    return [{_OPT_LABEL: symbol[0], _OPT_VALUE: symbol[1]} for symbol in pg.get_symbols()]
示例#12
0
import numpy as np

import dash
import dash_core_components as dcc
import dash_html_components as html

import plotly.graph_objects as go

import utils.AlphaVantageUtils as av
import utils.PostgresUtils as pg
import utils.ModelUtils as mdl

name = pg.get_symbol_name(av._TIC_MICROSOFT)
df_prices = pg.get_prices(av._TIC_MICROSOFT, av._INT_DAILY)

df_train, df_test = mdl.train_test_split(df_prices, 1000)

print(len(df_prices), len(df_train), len(df_test))
print(min(df_train[pg._COL_DATETIME]), max(df_train[pg._COL_DATETIME]))
print(min(df_test[pg._COL_DATETIME]), max(df_test[pg._COL_DATETIME]))

predictions = []


def baseline(train, test):

    print('\n Shape of training set:')
    print(train.shape)
    print('\n Shape of testing set:')
    print(test.shape)