def train(batch_size,
          epochs,
          lr_base,
          lr_power,
          weight_decay,
          classes,
          model_name,
          train_file_path,
          val_file_path,
          data_dir,
          label_dir,
          target_size=None,
          batchnorm_momentum=0.9,
          resume_training=False,
          class_weight=None,
          dataset='VOC2012',
          loss_fn=softmax_sparse_crossentropy_ignoring_last_label,
          metrics=[sparse_accuracy_ignoring_last_label],
          loss_shape=None,
          label_suffix='.png',
          data_suffix='.jpg',
          ignore_label=255,
          label_cval=255):
    if target_size:
        input_shape = target_size + (3, )
    else:
        input_shape = (None, None, 3)
    batch_shape = (batch_size, ) + input_shape

    ###########################################################
    current_dir = os.path.dirname(os.path.realpath(__file__))
    save_path = os.path.join(current_dir, 'Models/' + model_name)
    if os.path.exists(save_path) is False:
        os.mkdir(save_path)

    # ###############learning rate scheduler####################
    def lr_scheduler(epoch, mode='power_decay'):
        '''if lr_dict.has_key(epoch):
            lr = lr_dict[epoch]
            print 'lr: %f' % lr'''

        if mode is 'power_decay':
            # original lr scheduler
            lr = lr_base * ((1 - float(epoch) / epochs)**lr_power)
        if mode is 'exp_decay':
            # exponential decay
            lr = (float(lr_base)**float(lr_power))**float(epoch + 1)
        # adam default lr
        if mode is 'adam':
            lr = 0.001

        if mode is 'progressive_drops':
            # drops as progression proceeds, good for sgd
            if epoch > 0.9 * epochs:
                lr = 0.0001
            elif epoch > 0.75 * epochs:
                lr = 0.001
            elif epoch > 0.5 * epochs:
                lr = 0.01
            else:
                lr = 0.1

        print('lr: %f' % lr)
        return lr

    scheduler = LearningRateScheduler(lr_scheduler)

    # ###################### make model ########################
    checkpoint_path = os.path.join(save_path, 'checkpoint_weights.hdf5')

    model = globals()[model_name](weight_decay=weight_decay,
                                  input_shape=input_shape,
                                  batch_momentum=batchnorm_momentum,
                                  classes=classes)

    # ###################### optimizer ########################
    LR_mult_dict = {}
    LR_mult_dict['colorization_conv1'] = 3
    LR_mult_dict['colorization_conv2'] = 3
    #LR_mult_dict['colorization_conv3']=10
    #LR_mult_dict['colorization_conv4']=10

    #optimizer = SGD(lr=lr_base, momentum=0.9)
    optimizer = LR_SGD(lr=lr_base,
                       momentum=0.9,
                       decay=0.0,
                       nesterov=False,
                       multipliers=LR_mult_dict)
    # optimizer = Nadam(lr=lr_base, beta_1 = 0.825, beta_2 = 0.99685)

    model.compile(loss=softmax_sparse_crossentropy_ignoring_last_label,
                  optimizer=optimizer,
                  metrics=metrics)
    if resume_training:
        model.load_weights(checkpoint_path, by_name=True)

    model.summary()

    # lr_reducer      = ReduceLROnPlateau(monitor=softmax_sparse_crossentropy_ignoring_last_label, factor=np.sqrt(0.1),
    #                                     cooldown=0, patience=15, min_lr=0.5e-6)
    # early_stopper   = EarlyStopping(monitor=sparse_accuracy_ignoring_last_label, min_delta=0.0001, patience=70)
    # callbacks = [early_stopper, lr_reducer]
    callbacks = [scheduler]

    # ####################### tfboard ###########################
    if K.backend() == 'tensorflow':
        tensorboard = TensorBoard(log_dir=os.path.join(save_path, 'logs'),
                                  histogram_freq=0,
                                  write_graph=True)
        callbacks.append(tensorboard)
    # ################### checkpoint saver#######################
    checkpoint = ModelCheckpoint(filepath=os.path.join(
        save_path, 'checkpoint_weights.hdf5'),
                                 save_weights_only=True)  #.{epoch:d}
    callbacks.append(checkpoint)
    # set data generator and train
    train_datagen = SegDataGenerator(
        zoom_range=[1.0, 1.5],
        zoom_maintain_shape=True,
        crop_mode='random',
        crop_size=target_size,
        # pad_size=(505, 505),
        rotation_range=5.,
        shear_range=0,
        horizontal_flip=True,
        channel_shift_range=0.,
        fill_mode='constant',
        label_cval=label_cval)

    def get_file_len(file_path):
        fp = open(file_path)
        lines = fp.readlines()
        fp.close()
        return len(lines)

    # from Keras documentation: Total number of steps (batches of samples) to yield from generator before declaring one epoch finished
    # and starting the next epoch. It should typically be equal to the number of unique samples of your dataset divided by the batch size.
    steps_per_epoch = int(
        np.ceil(get_file_len(train_file_path) / float(batch_size)))

    history = model.fit_generator(
        generator=train_datagen.flow_from_directory(
            file_path=train_file_path,
            data_dir=data_dir,
            data_suffix=data_suffix,
            label_dir=label_dir,
            label_suffix=label_suffix,
            classes=classes,
            target_size=target_size,
            color_mode='rgb',
            batch_size=batch_size,
            shuffle=True,
            loss_shape=loss_shape,
            ignore_label=ignore_label,
            # save_to_dir='Images/'
        ),
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        callbacks=callbacks,
        workers=4,
        class_weight=class_weight)

    model.save_weights(save_path + '/model.hdf5')
示例#2
0
def train(batch_size, epochs, lr_base, lr_power, weight_decay, classes,
          model_name, train_file_path, val_file_path,
          data_dir, label_dir, target_size=None, batchnorm_momentum=0.9,
          resume_training=False, class_weight=None, dataset='VOC2012',
          loss_fn = softmax_sparse_crossentropy_ignoring_last_label,
          metrics = [sparse_accuracy_ignoring_last_label],
          loss_shape=None,
          label_suffix='.png',
          data_suffix='.jpg',
          ignore_label=255,
          label_cval=255):
    if target_size:
        input_shape = target_size + (3,)
    else:
        input_shape = (None, None, 3)
    batch_shape = (batch_size,) + input_shape

    ###########################################################
    current_dir = os.path.dirname(os.path.realpath(__file__))
    save_path = os.path.join(current_dir, 'Models/' + model_name)
    if os.path.exists(save_path) is False:
        os.mkdir(save_path)

    # ###############learning rate scheduler####################
    def lr_scheduler(epoch, mode='power_decay'):
        '''if lr_dict.has_key(epoch):
            lr = lr_dict[epoch]
            print 'lr: %f' % lr'''

        if mode is 'power_decay':
            # original lr scheduler
            lr = lr_base * ((1 - float(epoch)/epochs) ** lr_power)
        if mode is 'exp_decay':
            # exponential decay
            lr = (float(lr_base) ** float(lr_power)) ** float(epoch+1)
        # adam default lr
        if mode is 'adam':
            lr = 0.001

        if mode is 'progressive_drops':
            # drops as progression proceeds, good for sgd
            if epoch > 0.9 * epochs:
                lr = 0.0001
            elif epoch > 0.75 * epochs:
                lr = 0.001
            elif epoch > 0.5 * epochs:
                lr = 0.01
            else:
                lr = 0.1

        print('lr: %f' % lr)
        return lr
    scheduler = LearningRateScheduler(lr_scheduler)

    # ###################### make model ########################
    checkpoint_path = os.path.join(save_path, 'checkpoint_weights.hdf5')

    model = globals()[model_name](weight_decay=weight_decay,
                                  input_shape=input_shape,
                                  batch_momentum=batchnorm_momentum,
                                  classes=classes)

    # ###################### optimizer ########################
    optimizer = SGD(lr=lr_base, momentum=0.9)
    # optimizer = Nadam(lr=lr_base, beta_1 = 0.825, beta_2 = 0.99685)

    model.compile(loss=loss_fn,
                  optimizer=optimizer,
                  metrics=metrics)
    if resume_training:
        model.load_weights(checkpoint_path, by_name=True)
    model_path = os.path.join(save_path, "model.json")
    # save model structure
    f = open(model_path, 'w')
    model_json = model.to_json()
    f.write(model_json)
    f.close
    img_path = os.path.join(save_path, "model.png")
    # #vis_util.plot(model, to_file=img_path, show_shapes=True)
    model.summary()

    # lr_reducer      = ReduceLROnPlateau(monitor=softmax_sparse_crossentropy_ignoring_last_label, factor=np.sqrt(0.1),
    #                                     cooldown=0, patience=15, min_lr=0.5e-6)
    # early_stopper   = EarlyStopping(monitor=sparse_accuracy_ignoring_last_label, min_delta=0.0001, patience=70)
    # callbacks = [early_stopper, lr_reducer]
    callbacks = [scheduler]

    # ####################### tfboard ###########################
    if K.backend() == 'tensorflow':
        tensorboard = TensorBoard(log_dir=os.path.join(save_path, 'logs'), histogram_freq=10, write_graph=True)
        callbacks.append(tensorboard)
    # ################### checkpoint saver#######################
    checkpoint = ModelCheckpoint(filepath=os.path.join(save_path, 'checkpoint_weights.hdf5'), save_weights_only=True)#.{epoch:d}
    callbacks.append(checkpoint)
    # set data generator and train
    train_datagen = SegDataGenerator(zoom_range=[0.5, 2.0],
                                     zoom_maintain_shape=True,
                                     crop_mode='random',
                                     crop_size=target_size,
                                     # pad_size=(505, 505),
                                     rotation_range=0.,
                                     shear_range=0,
                                     horizontal_flip=True,
                                     channel_shift_range=20.,
                                     fill_mode='constant',
                                     label_cval=label_cval)
    val_datagen = SegDataGenerator()

    def get_file_len(file_path):
        fp = open(file_path)
        lines = fp.readlines()
        fp.close()
        return len(lines)

    history = model.fit_generator(
        generator=train_datagen.flow_from_directory(
            file_path=train_file_path,
            data_dir=data_dir, data_suffix=data_suffix,
            label_dir=label_dir, label_suffix=label_suffix,
            classes=classes,
            target_size=target_size, color_mode='rgb',
            batch_size=batch_size, shuffle=True,
            loss_shape=loss_shape,
            ignore_label=ignore_label,
            # save_to_dir='Images/'
        ),
        steps_per_epoch=get_file_len(train_file_path),
        epochs=epochs,
        callbacks=callbacks,
        nb_worker=4,
         validation_data=val_datagen.flow_from_directory(
             file_path=val_file_path, data_dir=data_dir, data_suffix='.jpg',
             label_dir=label_dir, label_suffix='.png',classes=classes,
             target_size=target_size, color_mode='rgb',
             batch_size=batch_size, shuffle=False
        ),
        nb_val_samples = 64,
        class_weight=class_weight
       )

    model.save_weights(save_path+'/model.hdf5')
data_suffix = '.jpg'
label_suffix = '.png'
classes = 21
target_size = (320, 320)
ignore_label = 255
label_cval = 255
loss_shape = None
batch_size = 1
train_datagen = SegDataGenerator(
    featurewise_center=False,
    featurewise_std_normalization=False,
    # zoom_range=[0.5, 2.0],
    zoom_maintain_shape=True,
    crop_mode='none',
    crop_size=target_size,
    # pad_size=(505, 505),
    rotation_range=0.,
    shear_range=0,
    horizontal_flip=False,
    # channel_shift_range=20.,
    fill_mode='constant',
    label_cval=label_cval)

train_generator = train_datagen.flow_from_directory(
    file_path=val_file_path,
    data_dir=data_dir,
    data_suffix=data_suffix,
    label_dir=label_dir,
    label_suffix=label_suffix,
    classes=classes,
    target_size=target_size,
示例#4
0
def train(batch_size, epochs, lr_base, lr_power, weight_decay, classes,
          model_name, train_file_path, val_file_path,
          data_dir, label_dir, target_size=None, batchnorm_momentum=0.9,
          resume_training=False, class_weight=None, dataset='VOC2012',
          loss_fn=softmax_sparse_crossentropy_ignoring_last_label,
          metrics=[sparse_accuracy_ignoring_last_label],
          loss_shape=None,
          label_suffix='.png',
          data_suffix='.jpg',
          ignore_label=255,
          label_cval=255):
    if target_size:
        input_shape = target_size + (3,)
    else:
        input_shape = (None, None, 3)
    batch_shape = (batch_size,) + input_shape

    ###########################################################
    current_dir = os.path.dirname(os.path.realpath(__file__))
    save_path = os.path.join(current_dir, 'Models/' + model_name)
    if os.path.exists(save_path) is False:
        os.mkdir(save_path)

    # ###############learning rate scheduler####################
    def lr_scheduler(epoch, mode='power_decay'):
        '''if lr_dict.has_key(epoch):
            lr = lr_dict[epoch]
            print 'lr: %f' % lr'''

        if mode is 'power_decay':
            # original lr scheduler
            lr = lr_base * ((1 - float(epoch)/epochs) ** lr_power)
        if mode is 'exp_decay':
            # exponential decay
            lr = (float(lr_base) ** float(lr_power)) ** float(epoch+1)
        # adam default lr
        if mode is 'adam':
            lr = 0.001

        if mode is 'progressive_drops':
            # drops as progression proceeds, good for sgd
            if epoch > 0.9 * epochs:
                lr = 0.0001
            elif epoch > 0.75 * epochs:
                lr = 0.001
            elif epoch > 0.5 * epochs:
                lr = 0.01
            else:
                lr = 0.1

        print('lr: %f' % lr)
        return lr
    scheduler = LearningRateScheduler(lr_scheduler)

    # ###################### make model ########################
    checkpoint_path = os.path.join(save_path, 'checkpoint_weights.hdf5')

    model = globals()[model_name](weight_decay=weight_decay,
                                  input_shape=input_shape,
                                  batch_momentum=batchnorm_momentum,
                                  classes=classes)

    # ###################### optimizer ########################
    optimizer = SGD(lr=lr_base, momentum=0.9)
    # optimizer = Nadam(lr=lr_base, beta_1 = 0.825, beta_2 = 0.99685)

    model.compile(loss=loss_fn,
                  optimizer=optimizer,
                  metrics=metrics)
    if resume_training:
        model.load_weights(checkpoint_path, by_name=True)
    model_path = os.path.join(save_path, "model.json")
    # save model structure
    f = open(model_path, 'w')
    model_json = model.to_json()
    f.write(model_json)
    f.close
    img_path = os.path.join(save_path, "model.png")
    # #vis_util.plot(model, to_file=img_path, show_shapes=True)
    model.summary()

    # lr_reducer      = ReduceLROnPlateau(monitor=softmax_sparse_crossentropy_ignoring_last_label, factor=np.sqrt(0.1),
    #                                     cooldown=0, patience=15, min_lr=0.5e-6)
    # early_stopper   = EarlyStopping(monitor=sparse_accuracy_ignoring_last_label, min_delta=0.0001, patience=70)
    # callbacks = [early_stopper, lr_reducer]
    callbacks = [scheduler]

    # ####################### tfboard ###########################
    if K.backend() == 'tensorflow':
        tensorboard = TensorBoard(log_dir=os.path.join(save_path, 'logs'), histogram_freq=10, write_graph=True)
        callbacks.append(tensorboard)
    # ################### checkpoint saver#######################
    checkpoint = ModelCheckpoint(filepath=os.path.join(save_path, 'checkpoint_weights.hdf5'), save_weights_only=True)#.{epoch:d}
    callbacks.append(checkpoint)
    # set data generator and train
    train_datagen = SegDataGenerator(zoom_range=[0.5, 2.0],
                                     zoom_maintain_shape=True,
                                     crop_mode='random',
                                     crop_size=target_size,
                                     # pad_size=(505, 505),
                                     rotation_range=0.,
                                     shear_range=0,
                                     horizontal_flip=True,
                                     channel_shift_range=20.,
                                     fill_mode='constant',
                                     label_cval=label_cval)
    val_datagen = SegDataGenerator()

    def get_file_len(file_path):
        fp = open(file_path)
        lines = fp.readlines()
        fp.close()
        return len(lines)

    # from Keras documentation: Total number of steps (batches of samples) to yield from generator before declaring one epoch finished
    # and starting the next epoch. It should typically be equal to the number of unique samples of your dataset divided by the batch size.
    steps_per_epoch = int(np.ceil(get_file_len(train_file_path) / float(batch_size)))

    history = model.fit_generator(
        generator=train_datagen.flow_from_directory(
            file_path=train_file_path,
            data_dir=data_dir, data_suffix=data_suffix,
            label_dir=label_dir, label_suffix=label_suffix,
            classes=classes,
            target_size=target_size, color_mode='rgb',
            batch_size=batch_size, shuffle=True,
            loss_shape=loss_shape,
            ignore_label=ignore_label,
            # save_to_dir='Images/'
        ),
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        callbacks=callbacks,
        workers=4,
        # validation_data=val_datagen.flow_from_directory(
        #     file_path=val_file_path, data_dir=data_dir, data_suffix='.jpg',
        #     label_dir=label_dir, label_suffix='.png',classes=classes,
        #     target_size=target_size, color_mode='rgb',
        #     batch_size=batch_size, shuffle=False
        # ),
        # nb_val_samples = 64
        class_weight=class_weight
       )

    model.save_weights(save_path+'/model.hdf5')
示例#5
0
def train(batch_size, epochs, lr_base, lr_power, weight_decay, classes,
          model_name, train_file_path, val_file_path,
          data_dir, label_dir, target_size=None, batchnorm_momentum=0.9,
          load_model=False, class_weight=None, dataset='VOC2012',
          loss_fn = softmax_sparse_crossentropy_ignoring_last_label,
          metrics = [sparse_accuracy_ignoring_last_label],
          loss_shape=None,
          label_suffix='.png',
          data_suffix='.jpg',
          ignore_label=255,
          label_cval=255):
    if target_size:
        input_shape = target_size + (3,)
    else:
        input_shape = (None, None, 3)
    batch_shape = (batch_size,) + input_shape

    ###########################################################
    current_dir = os.path.dirname(os.path.realpath(__file__))
    #save_path = os.path.join(current_dir, 'Models/' + model_name)
    save_path = os.path.join(current_dir, run_name)
    if os.path.exists(save_path) is False:
        os.mkdir(save_path)

    with open(os.path.join(save_path, 'conf.json'), 'w') as outfile:
        json.dump(conf, outfile)

    # ###############learning rate scheduler####################
    def lr_scheduler(epoch, mode='power_decay'):
        '''if lr_dict.has_key(epoch):
            lr = lr_dict[epoch]
            print 'lr: %f' % lr'''

        if mode is 'power_decay':
            # original lr scheduler
            lr = lr_base * ((1 - float(epoch)/epochs) ** lr_power)
        if mode is 'exp_decay':
            # exponential decay
            lr = (float(lr_base) ** float(lr_power)) ** float(epoch+1)
        # adam default lr
        if mode is 'adam':
            lr = 0.001

        if mode is 'progressive_drops':
            # drops as progression proceeds, good for sgd
            if epoch > 0.9 * epochs:
                lr = 0.0001
            elif epoch > 0.75 * epochs:
                lr = 0.001
            elif epoch > 0.5 * epochs:
                lr = 0.01
            else:
                lr = 0.1

        print('lr: %f' % lr)
        return lr
    scheduler = LearningRateScheduler(lr_scheduler)

    # ###################### make model ########################
    checkpoint_path = os.path.join(save_path, 'checkpoint_weights.hdf5')

    model = globals()[model_name](weight_decay=weight_decay,
                                  input_shape=input_shape,
                                  batch_momentum=batchnorm_momentum,
                                  classes=classes)

    # ###################### optimizer ########################
    optimizer = SGD(lr=lr_base, momentum=0.9)
    # optimizer = Nadam(lr=lr_base, beta_1 = 0.825, beta_2 = 0.99685)


    csv_logger = CSVLogger(
            #'output/{}_fcn_vgg16.csv'.format(datetime.datetime.now().isoformat()))
            '%s/tmp_fcn_vgg16_cosmic_small.csv' % run_name)


    with open(conf.test_file_path) as f:
        test_image_list = f.read().splitlines()
        
    #print(test_image_list)
    
    class SaveSampleImages(keras.callbacks.Callback):
        def on_train_begin(self, logs={}):
            self.batchnum=0
                
        def on_epoch_end(self, batch, logs={}):
            directory = '%s/samples/%i' % (run_name, self.batchnum)
            if not os.path.exists(directory):
                os.makedirs(directory)
            model_name = 'AtrousFCN_Resnet50_16s'
            #model_name = 'Atrous_DenseNet'
            #model_name = 'DenseNet_FCN'
            weight_file = 'checkpoint_weights.hdf5'
            image_size = (320, 320)
            log_file = os.path.join(directory, 'metrics.json')
          
            results = inference_model(self.model, image_size, test_image_list,
                                      conf.data_dir, conf.label_dir, run_name,
                                      label_suffix=conf.label_suffix, data_suffix=conf.data_suffix,
                                      target_size=target_size, log_file=log_file

            )
                                    
            for image, result in zip(test_image_list, results):                
                result.save('%s/%s.png' % (directory, image))
                        
            self.batchnum+=1

    
    model.compile(loss=loss_fn,
                  optimizer=optimizer,
                  metrics=metrics)
    if load_model:
        model.load_weights(load_model)
    model_path = os.path.join(save_path, "model.json")
    # save model structure
    f = open(model_path, 'w')
    model_json = model.to_json()
    f.write(model_json)
    f.close()
    
    img_path = os.path.join(save_path, "model.png")
    # #vis_util.plot(model, to_file=img_path, show_shapes=True)
    model.summary()

    # lr_reducer      = ReduceLROnPlateau(monitor=softmax_sparse_crossentropy_ignoring_last_label, factor=np.sqrt(0.1),
    #                                     cooldown=0, patience=15, min_lr=0.5e-6)
    # early_stopper   = EarlyStopping(monitor=sparse_accuracy_ignoring_last_label, min_delta=0.0001, patience=70)
    # callbacks = [early_stopper, lr_reducer]
    callbacks = [scheduler]

    # ####################### tfboard ###########################
    if K.backend() == 'tensorflow':
        tensorboard = TensorBoard(log_dir=os.path.join(save_path, 'logs'), histogram_freq=10, write_graph=True)
        callbacks.append(tensorboard)
    # ################### checkpoint saver#######################

    callbacks.append(csv_logger)
    
    checkpoint = ModelCheckpoint(filepath=os.path.join(save_path, 'checkpoint_weights.hdf5'), save_weights_only=True)#.{epoch:d}
    callbacks.append(checkpoint)

    save_sample_images = SaveSampleImages()
    callbacks.append(save_sample_images)
    
    # set data generator and train
    train_datagen = SegDataGenerator(zoom_range=[0.5, 2.0],
                                     zoom_maintain_shape=True,
                                     crop_mode='random',
                                     crop_size=target_size,
                                     # pad_size=(505, 505),
                                     rotation_range=0.,
                                     shear_range=0,
                                     horizontal_flip=True,
                                     channel_shift_range=20.,
                                     fill_mode='constant',
                                     label_cval=label_cval)
    val_datagen = SegDataGenerator()

    def get_file_len(file_path):
        fp = open(file_path)
        lines = fp.readlines()
        fp.close()
        return len(lines)
    history = model.fit_generator(
        train_datagen.flow_from_directory(
            file_path=train_file_path,
            data_dir=data_dir, data_suffix=data_suffix,
            label_dir=label_dir, label_suffix=label_suffix,
            classes=classes,
            target_size=target_size, color_mode='rgb',
            batch_size=batch_size, shuffle=True,
            loss_shape=loss_shape,
            ignore_label=ignore_label,

            # save_to_dir='Images/'
        ),
        2000,#get_file_len(train_file_path),
        epochs=epochs,
        callbacks=callbacks,
        workers=12,
        # validation_data=val_datagen.flow_from_directory(
        #     file_path=val_file_path, data_dir=data_dir, data_suffix='.jpg',
        #     label_dir=label_dir, label_suffix='.png',classes=classes,
        #     target_size=target_size, color_mode='rgb',
        #     batch_size=batch_size, shuffle=False
        # ),
        # nb_val_samples = 64
        class_weight=class_weight
       )

    model.save_weights(save_path+'/model.hdf5')
示例#6
0
def train(batch_size,
          epochs,
          lr_base,
          lr_power,
          weight_decay,
          classes,
          model_name,
          train_file_path,
          val_file_path,
          data_dir,
          label_dir,
          target_size=None,
          batchnorm_momentum=0.9,
          loss_fn=softmax_crossentropy,
          metrics=[],
          label_cval=255):

    #设置批文件大小
    if target_size:
        input_shape = target_size + (1, )  #之前给的是320*320
    else:
        input_shape = (None, None, 1)
    batch_shape = (batch_size, ) + input_shape  #每一个batch的大小

    # ###############设置学习率随权重衰减####################
    def lr_scheduler(epoch, mode='power_decay'):  #设置学习率参数,注意默认参数是power_decay

        if mode is 'power_decay':
            # ** 在python里面表示幂运算,radius**3 表示radius的3次方
            lr = lr_base * ((1 - float(epoch) / epochs)**lr_power)
        if mode is 'exp_decay':
            # exponential decay
            lr = (float(lr_base)**float(lr_power))**float(epoch + 1)
        # adam default lr
        if mode is 'adam':
            lr = 0.001

        if mode is 'progressive_drops':
            # drops as progression proceeds, good for sgd
            if epoch > 0.9 * epochs:
                lr = 0.0001
            elif epoch > 0.75 * epochs:
                lr = 0.001
            elif epoch > 0.5 * epochs:
                lr = 0.01
            else:
                lr = 0.1

        print('回调一次:lr: %f' % lr)
        return lr

    scheduler = LearningRateScheduler(lr_scheduler)  #设置学习率

    #生成模型
    model = globals()[model_name](
        weight_decay=weight_decay,  #正则化项目的系数
        input_shape=input_shape,  #每一张输入图片的大小
        batch_momentum=batchnorm_momentum,  #动量前面的系数
        classes=classes)  #glob是为了访问全局变量,并且修改这个model的参数

    # 定义优化器,并且进行编译,这里使用带动量的SGD下降
    optimizer = SGD(lr=lr_base, momentum=0.9)
    # optimizer = Nadam(lr=lr_base, beta_1 = 0.825, beta_2 = 0.99685)
    """----------------------loss_fn用法---------------------------"""
    # 可以通过传递预定义目标函数名字指定目标函数,也可以传递一个Theano/TensroFlow的符号函数作为目标函数,
    # 该函数对每个数据点应该只返回一个标量值,并以下列两个参数为参数
    #y_true:真实的数据标签,Theano/TensorFlow张量
    #y_pred:预测值,与y_true相同shape的Theano/TensorFlow张量
    """----------------------metrics用法---------------------------"""
    #性能评估模块提供了一系列用于模型性能评估的函数, 这些函数在模型编译时由metrics关键字设置
    #性能评估函数类似与目标函数, 只不过请注意该性能的评估结果讲不会用于训练.
    #可以通过字符串来使用域定义的性能评估函数
    #y_true:真实标签,theano/tensorflow张量
    #y_pred:预测值, 与y_true形式相同的theano/tensorflow张量
    model.compile(loss=loss_fn, optimizer=optimizer, metrics=metrics)

    # 设置model的保存路径
    current_dir = os.path.dirname(os.path.realpath(__file__))  # 获得当前py文件所在的路径
    save_path = os.path.join(current_dir,
                             'Models/' + model_name)  # 给出文件model保存的路径
    checkpoint_path = os.path.join(save_path, 'checkpoint_weights.hdf5')
    if os.path.exists(save_path) is False:
        os.mkdir(
            save_path
        )  # /home/ye/桌面/我的tensorflow之旅/heart/Models/AtrousFCN_Resnet50_16s
    #model.load_weights(checkpoint_path, by_name=True)#重新训练

    # 保存model的结构
    model_path = os.path.join(save_path, "model.json")
    f = open(model_path, 'w')
    model_json = model.to_json()
    f.write(model_json)
    f.close  #将model的结构写入到文件里面
    #draw_structor_to_png(save_path,model)#这一个是将网络结构图画出来的,老是装不上,弃疗了
    callbacks = [scheduler]  #设置学习率

    # ####################### 保存结果进行可视化 ###########################
    if K.backend() == 'tensorflow':
        tensorboard = TensorBoard(log_dir=os.path.join(save_path, 'logs'),
                                  write_graph=True)
        callbacks.append(tensorboard)
    #用于可视化

    # ################### 每个epoch的结尾处,尝试一次保留权重#######################
    checkpoint = ModelCheckpoint(filepath=os.path.join(
        save_path, 'checkpoint_weights.hdf5'),
                                 save_weights_only=True)
    callbacks.append(checkpoint)
    ##################################################################################################
    # losshistory = LossHistory()
    # callbacks.append(losshistory)
    ###################################################################################################
    # set data generator and train
    train_datagen = SegDataGenerator()  #初始化一些变量
    val_datagen = SegDataGenerator()  #获取验证集并且不剪取图片

    #报错来自于这个地方,因为它找不到train.path
    def get_file_len(file_path):
        fp = open(file_path)
        lines = fp.readlines()
        fp.close()
        return len(lines)

    steps_per_epoch = int(
        np.ceil(get_file_len(train_file_path) / float(batch_size)))
    # 发生器产生的步骤总数(样品批次)。它通常应该等于数据集中样本的数量除以批量大小。

    #第一个参数是生成函数

    #generator:生成器函数,生成器的输出应该为:
    # 一个形如(inputs,targets)的tuple
    #一个形如(inputs, targets, sample_weight)的tuple。所有的返回值都应该包含相同数目的样本。生成器将无限在数据集上循环。每个epoch以经过模型的样本数达到samples_per_epoch时,记一个epoch结束
    history = model.fit_generator(
        generator=train_datagen.flow_from_directory(
            file_path=train_file_path,
            data_dir=data_dir,
            label_dir=label_dir,
            classes=classes,
            target_size=target_size,
            color_mode='grayscale',
            batch_size=1,
            shuffle=True,
        ),
        steps_per_epoch=
        steps_per_epoch,  #当生成器返回steps_per_epoch次数据时计一个epoch结束,执行下一个epoch
        epochs=epochs,  #整数,数据迭代的轮数
        callbacks=callbacks,
        workers=4,  #最大进程数量
        validation_data=val_datagen.flow_from_directory(
            file_path=val_file_path,
            data_dir=data_dir,
            label_dir=label_dir,
            classes=classes,
            target_size=target_size,
            color_mode='grayscale',
            batch_size=1,
            shuffle=True,
        ),
    )

    model.save_weights(save_path + '/model.hdf5')
示例#7
0
def train(batch_size,
          epochs,
          lr_base,
          lr_power,
          weight_decay,
          classes,
          model_name,
          train_file_path,
          val_file_path,
          data_dir,
          label_dir,
          target_size=None,
          batchnorm_momentum=0.9,
          resume_training=False,
          class_weight=None,
          dataset='VOC2012',
          loss_fn=softmax_sparse_crossentropy_ignoring_last_label,
          metrics=[sparse_accuracy_ignoring_last_label],
          loss_shape=None,
          label_suffix='.png',
          data_suffix='.jpg',
          ignore_label=255,
          label_cval=255):
    if target_size:
        input_shape = target_size + (3, )
    else:
        input_shape = (None, None, 3)
    batch_shape = (batch_size, ) + input_shape

    ###########################################################
    current_dir = os.path.dirname(os.path.realpath(__file__))
    save_path = os.path.join(current_dir, 'Models/' + model_name)
    if os.path.exists(save_path) is False:
        os.mkdir(save_path)

    # ###############learning rate scheduler####################
    def lr_scheduler(epoch, mode='power_decay'):
        '''if lr_dict.has_key(epoch):
            lr = lr_dict[epoch]
            print 'lr: %f' % lr'''

        if mode is 'power_decay':
            # original lr scheduler
            lr = lr_base * ((1 - float(epoch) / epochs)**lr_power)
        if mode is 'exp_decay':
            # exponential decay
            lr = (float(lr_base)**float(lr_power))**float(epoch + 1)
        # adam default lr
        if mode is 'adam':
            lr = 0.001

        if mode is 'progressive_drops':
            # drops as progression proceeds, good for sgd
            if epoch > 0.9 * epochs:
                lr = 0.0001
            elif epoch > 0.75 * epochs:
                lr = 0.001
            elif epoch > 0.5 * epochs:
                lr = 0.01
            else:
                lr = 0.1

    # print('lr: %f' % lr)
        return lr
    scheduler = LearningRateScheduler(lr_scheduler)

    # ###################### make model ########################
    checkpoint_path = os.path.join(save_path, 'checkpoint_weights.hdf5')

    model = globals()[model_name](
        weight_decay=weight_decay,
        input_shape=input_shape,
        batch_momentum=batchnorm_momentum,
        classes=classes,
    )

    # ###################### optimizer ########################
    optimizer = SGD(lr=lr_base, momentum=0.9)
    #optimizer = Nadam(lr=lr_base, beta_1 = 0.825, beta_2 = 0.99685)

    model.compile(loss=loss_fn, optimizer=optimizer, metrics=metrics)
    if resume_training:
        model.load_weights(checkpoint_path, by_name=True)
    model_path = os.path.join(save_path, "model.json")
    # save model structure
    f = open(model_path, 'w')
    model_json = model.to_json()
    f.write(model_json)
    f.close
    img_path = os.path.join(save_path, "model.png")
    # #vis_util.plot(model, to_file=img_path, show_shapes=True)
    model.summary()

    # lr_reducer      = ReduceLROnPlateau(monitor=softmax_sparse_crossentropy_ignoring_last_label, factor=np.sqrt(0.1),
    #                                     cooldown=0, patience=15, min_lr=0.5e-6)
    # early_stopper   = EarlyStopping(monitor=sparse_accuracy_ignoring_last_label, min_delta=0.0001, patience=70)
    # callbacks = [early_stopper, lr_reducer]
    callbacks = [scheduler]

    # ####################### tfboard ###########################
    if K.backend() == 'tensorflow':
        tensorboard = TensorBoard(log_dir=os.path.join(save_path, 'logs'),
                                  histogram_freq=0,
                                  write_graph=True)
        callbacks.append(tensorboard)
    # ################### checkpoint saver#######################
    checkpoint = ModelCheckpoint(filepath=os.path.join(
        save_path, 'checkpoint_weights.hdf5'),
                                 save_weights_only=True)  #.{epoch:d}
    #print 'hi'
    callbacks.append(checkpoint)
    # set data generator and train

    train_datagen = SegDataGenerator(
        zoom_range=[0.5, 2.0],
        zoom_maintain_shape=True,
        crop_mode='random',
        crop_size=target_size,
        # pad_size=(505, 505),
        rotation_range=0.,
        shear_range=0,
        horizontal_flip=True,
        channel_shift_range=20.,
        fill_mode='constant',
        label_cval=label_cval)

    val_datagen = SegDataGenerator()
    train_datagen = SegDataGenerator()

    def load_test_images_from_folder(folder):
        images = []
        for filename in os.listdir(folder):
            #img = cv2.imread(os.path.join(folder, filename))
            img = Image.open(os.path.join(folder, filename))

            img = img.resize((320, 320))
            img = np.array(img, dtype='uint32')
            img = img[..., np.newaxis]
            #print img.shape
            #print img_to_array(img=img)
            if img is not None:
                images.append(img)
        return images

    def load_train_images_from_folder(folder):
        images = []
        for filename in os.listdir(folder):
            img = cv2.imread(os.path.join(folder, filename))

            img = cv2.resize(img, (512, 512))
            #print img_to_array(img=img)
            if img is not None:
                images.append(img)
        return images

    def get_file_len(file_path):
        fp = open(file_path)
        lines = fp.readlines()
        fp.close()
        return len(lines)

    def decode_segmap(label_mask, plot=False):
        """Decode segmentation class labels into a color image
        Args:
            label_mask (np.ndarray): an (M,N) array of integer values denoting
              the class label at each spatial location.
            plot (bool, optional): whether to show the resulting color image
              in a figure.
        Returns:
            (np.ndarray, optional): the resulting decoded color image.
        """
        label_colours = get_pascal_labels()
        r = label_mask.copy()
        g = label_mask.copy()
        b = label_mask.copy()
        for ll in range(0, 21):
            r[label_mask == ll] = label_colours[ll, 0]
            g[label_mask == ll] = label_colours[ll, 1]
            b[label_mask == ll] = label_colours[ll, 2]
        rgb = np.zeros((label_mask.shape[0], label_mask.shape[1], 3))
        rgb[:, :, 0] = r
        rgb[:, :, 1] = g
        rgb[:, :, 2] = b
        if plot:
            plt.imshow(rgb)
            plt.show()
        else:
            return rgb

    def get_pascal_labels():
        """Load the mapping that associates pascal classes with label colors
        Returns:
            np.ndarray with dimensions (21, 3)
        """
        return np.asarray([[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
                           [0, 0, 128], [128, 0, 128], [0, 128, 128],
                           [128, 128, 128], [64, 0, 0], [192, 0, 0],
                           [64, 128, 0], [192, 128, 0], [64, 0, 128],
                           [192, 0, 128], [64, 128, 128], [192, 128, 128],
                           [0, 64, 0], [128, 64, 0], [0, 192, 0],
                           [128, 192, 0], [0, 64, 128]])

    def encode_segmap(mask):
        """Encode segmentation label images as pascal classes
        Args:
            mask (np.ndarray): raw segmentation label image of dimension
              (M, N, 3), in which the Pascal classes are encoded as colours.
        Returns:
            (np.ndarray): class map with dimensions (M,N), where the value at
            a given location is the integer denoting the class index.
        """
        #print(mask.shape)
        mask = mask.astype(int)
        #print mask.shape
        label_mask = np.zeros((mask.shape[0], mask.shape[1]), dtype=np.int16)
        #print label_mask.shape
        for ii, label in enumerate(get_pascal_labels()):
            #print label.shape
            #print (np.all(mask == label, axis=-1)).shape
            label_mask[np.where(np.all(mask == label, axis=-1))[:2]] = ii
            #print label_mask.shape
        label_mask = label_mask.astype(int)
        # print( label_mask.shape)
        #print('label')
        return label_mask

    X = load_train_images_from_folder(
        '../data_processed/new/JPEGImages_train/')
    y = load_train_images_from_folder('../data_processed/SegmentationClass/')
    # from Keras documentation: Total number of steps (batches of samples) to yield from generator before declaring one epoch finished
    # and starting the next epoch. It should typically be equal to the number of unique samples of your dataset divided by the batch size.
    # steps_per_epoch = int(np.ceil(get_file_len(train_file_path) / float(batch_size)))
    # print(len(X))
    # print(len(y))
    #print('data loaded')
    X = np.array(X)
    y = np.array(y)
    # print y.shape
    y_en = np.zeros((y.shape[0], y.shape[1], y.shape[2]))
    #print X.shape
    #print type(X)
    #print type(y)
    # print((X[0]).shape)
    #print(y[0].shape)
    y_temp = np.zeros((512, 512))
    #print(y[0,:,:,:].shape)
    y[0, :, :, [0, 1, 2]] = y[0, :, :, [2, 1, 0]]
    y_temp[:, :] = encode_segmap(y[0])
    #print(y_temp.shape)
    #print(y_temp)
    #print((y_temp>0).sum())
    y_orig = decode_segmap(y_temp)
    #print(y_orig.shape)
    y_orig[:, :, [0, 1, 2]] = y_orig[:, :, [2, 1, 0]]
    cv2.imwrite('test.png', y_orig)
    y[0, :, :, [2, 1, 0]] = y[0, :, :, [0, 1, 2]]
    for i in range(y.shape[0]):
        #print(y[i].shape)
        y[i, :, :, [0, 1, 2]] = y[i, :, :, [2, 1, 0]]
        y_en[i, :, :] = encode_segmap(y[i])
    #y_temp[:,:]=y_en[i,:,:]
    #print(np.sum(np.sum(y_temp>0)))
    #y_orig[:,:,[0,1,2]]=y_orig[:,:,[2,1,0]]
    #cv2.imwrite('test.png',y_orig)

# print y_en.shape
#print type()
#print y_en.shape

#y_enp=np.reshape(y_en,(320,320,1))
    y_en = y_en[..., np.newaxis]

    model.fit(X, y_en, epochs=100, batch_size=16, callbacks=callbacks)
    '''
    history = model.fit_generator(
        generator=train_datagen.flow_from_directory(
            file_path=train_file_path,
            data_dir=data_dir, data_suffix=data_suffix,
            label_dir=label_dir, label_suffix=label_suffix,
            classes=classes,
            target_size=target_size, color_mode='rgb',
            batch_size=batch_size, shuffle=True,
            loss_shape=loss_shape,
            ignore_label=ignore_label,
            # save_to_dir='Images/'
        ),
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        callbacks=callbacks,
        workers=4,
        # validation_data=val_datagen.flow_from_directory(
        #     file_path=val_file_path, data_dir=data_dir, data_suffix='.jpg',
        #     label_dir=label_dir, label_suffix='.png',classes=classes,
        #     target_size=target_size, color_mode='rgb',
        #     batch_size=batch_size, shuffle=False
        # ),
        # nb_val_samples = 64
        class_weight=class_weight
       )
    '''
    model.save_weights(save_path + '/model.hdf5')
from utils.loss_function import *
from utils.metrics import *
from utils.SegDataGenerator import *
import time

target_size = (320, 320)
label_cval = 100
loss_shape = None
ignore_label = 100
numImages = 100  #num images generated is numImages * 100
datagen = SegDataGenerator(  #zoom_range=[0.5, 2.0],
    zoom_maintain_shape=True,
    #crop_mode='random',
    crop_size=target_size,
    # pad_size=(505, 505),
    #rotation_range=60,
    #shear_range=0,
    #horizontal_flip=True,
    #channel_shift_range=1.,
    fill_mode='constant',
    label_cval=label_cval,
)

train_file_path = os.path.expanduser(
    '~/.keras/datasets/weedspic/lettuce/train.txt')
val_file_path = os.path.expanduser(
    '~/.keras/datasets/weedspic/lettuce/validation.txt')
data_dir = os.path.expanduser('~/.keras/datasets/weedspic/lettuce/image')
label_dir = os.path.expanduser('~/.keras/datasets/weedspic/lettuce/label')
data_suffix = '.png'
label_suffix = '.png'
classes = 2
示例#9
0
def train(batch_size,
          nb_epoch,
          lr_base,
          lr_power,
          weight_decay,
          nb_classes,
          model_name,
          train_file_path,
          val_file_path,
          data_dir,
          label_dir,
          target_size=None,
          batchnorm_momentum=0.9,
          resume_training=False):
    if target_size:
        input_shape = target_size + (3, )
    else:
        input_shape = (None, None, 3)
    batch_shape = (batch_size, ) + input_shape

    ###########################################################
    current_dir = os.path.dirname(os.path.realpath(__file__))
    save_path = os.path.join(current_dir, 'Models/' + model_name)
    if os.path.exists(save_path) == False:
        os.mkdir(save_path)
    ################learning rate scheduler####################
    def lr_scheduler(epoch):
        '''if lr_dict.has_key(epoch):
            lr = lr_dict[epoch]
            print 'lr: %f' % lr'''
        lr = lr_base * ((1 - float(epoch) / nb_epoch)**lr_power)
        print 'lr: %f' % lr
        return lr

    scheduler = LearningRateScheduler(lr_scheduler)
    ######################## tfboard ###########################
    tfboard = TensorBoard(log_dir=os.path.join(save_path, 'logs'))

    ####################### make model ########################
    checkpoint_path = os.path.join(save_path, 'checkpoint_weights.hdf5')

    model = globals()[model_name](weight_decay=weight_decay,
                                  input_shape=input_shape,
                                  batch_momentum=batchnorm_momentum)
    sgd = SGD(lr=lr_base, momentum=0.9)
    model.compile(loss=softmax_sparse_crossentropy_ignoring_last_label,
                  optimizer=sgd,
                  metrics=[sparse_accuracy_ignoring_last_label])
    if resume_training:
        model.load_weights(checkpoint_path, by_name=True)
    model_path = os.path.join(save_path, "model.json")
    # save model structure
    f = open(model_path, 'w')
    model_json = model.to_json()
    f.write(model_json)
    f.close
    img_path = os.path.join(save_path, "model.png")
    vis_util.plot(model, to_file=img_path, show_shapes=True)
    model.summary()

    #################### checkpoint saver#######################
    checkpoint = ModelCheckpoint(filepath=os.path.join(
        save_path, 'checkpoint_weights.hdf5'),
                                 save_weights_only=True)  #.{epoch:d}

    # set data generator and train
    train_datagen = SegDataGenerator(
        zoom_range=[0.5, 2.0],
        zoom_maintain_shape=True,
        crop_mode='random',
        crop_size=target_size,  #pad_size=(505, 505),
        rotation_range=0.,
        shear_range=0,
        horizontal_flip=True,
        channel_shift_range=20.,
        fill_mode='constant',
        label_cval=255)

    def get_file_len(file_path):
        fp = open(file_path)
        lines = fp.readlines()
        fp.close()
        return len(lines)

    history = model.fit_generator(
        generator=train_datagen.flow_from_directory(
            file_path=train_file_path,
            data_dir=data_dir,
            data_suffix='.jpg',
            label_dir=label_dir,
            label_suffix='.png',
            nb_classes=nb_classes,
            target_size=target_size,
            color_mode='rgb',
            batch_size=batch_size,
            shuffle=True,
            #save_to_dir='Images/'
        ),
        samples_per_epoch=get_file_len(train_file_path),
        nb_epoch=nb_epoch,
        callbacks=[scheduler, checkpoint],
        nb_worker=4,
        #validation_data=val_datagen.flow_from_directory(
        #    file_path=val_file_path, data_dir=data_dir, data_suffix='.jpg',
        #    label_dir=label_dir, label_suffix='.png',nb_classes=nb_classes,
        #    target_size=target_size, color_mode='rgb',
        #    batch_size=batch_size, shuffle=False
        #),
        #nb_val_samples = 64
    )

    model.save_weights(save_path + '/model.hdf5')
示例#10
0
def train(batch_size, nb_epoch, lr_dict, weight_decay, nb_classes, model_name, train_file_path, val_file_path,
            data_dir, label_dir, target_size=None, resume_training=False):
    if target_size:
        input_shape = target_size + (3,)
    else:
        input_shape = (None, None, 3)

    ###########################################################
    current_dir = os.path.dirname(os.path.realpath(__file__))
    save_path = os.path.join(current_dir, model_name)
    if os.path.exists(save_path) == False:
        os.mkdir(save_path)
    ################learning rate scheduler####################
    lr = 0.
    def lr_scheduler(epoch):
        global lr
        if lr_dict.has_key(epoch):
            lr = lr_dict[epoch]
            print 'lr: %f' % lr
        return lr
    scheduler = LearningRateScheduler(lr_scheduler)
    ######################## tfboard ###########################
    tfboard = TensorBoard(log_dir=os.path.join(save_path, 'logs'))

    ####################### make model ########################
    checkpoint_path = os.path.join(save_path, 'checkpoint_weights.hdf5')
    resume_from_epoch = 0
    if os.path.isfile(checkpoint_path) and resume_training: # resume from last checkpoint
        model_path = os.path.join(save_path, "model.json")
        f = open(model_path, 'r')
        model_json = f.read()
        f.close
        model = model_from_json(model_json, {'BilinearUpSampling2D': BilinearUpSampling2D})
        sgd = SGD(lr=0.001, momentum=0.9)
        model.compile(loss = softmax_sparse_crossentropy_ignoring_last_label, optimizer=sgd, metrics=[sparse_accuracy_ignoring_last_label])
        model.load_weights(checkpoint_path)
        with open(os.path.join(save_path, 'train_state.pkl')) as f:
            resume_from_epoch, batch_size, nb_epoch, lr_dict, weight_decay, nb_classes = pickle.load(f)

        print 'resuming from epoch %d'%resume_from_epoch
        print lr_dict
    else:
        model = globals()[model_name](input_shape, weight_decay)
        sgd = SGD(lr=0.001, momentum=0.9)
        model.compile(loss = softmax_sparse_crossentropy_ignoring_last_label, optimizer=sgd, metrics=[sparse_accuracy_ignoring_last_label])
        model_path = os.path.join(save_path, "model.json")
        # save model structure
        f = open(model_path, 'w')
        model_json = model.to_json()
        f.write(model_json)
        f.close
        img_path = os.path.join(save_path, "model.png")
        vis_util.plot(model, to_file=img_path, show_shapes=True)

    #################### checkpoint saver#######################
    checkpoint = ModelCheckpoint(filepath=checkpoint_path, save_weights_only=True)
    train_state = TrainingStateCheckpoint(os.path.join(save_path, 'train_state.pkl'), batch_size, nb_epoch, lr_dict, weight_decay, nb_classes, resume_from_epoch)

    # set data generator and train
    train_datagen = SegDataGenerator(channelwise_center=True, zoom_range=0.5, fill_mode='constant', horizontal_flip=True)
    train_datagen.set_ch_mean(np.array([104.00699, 116.66877, 122.67892]))
    val_datagen = SegDataGenerator(channelwise_center=True, fill_mode='constant')
    val_datagen.set_ch_mean(np.array([104.00699, 116.66877, 122.67892]))
    def get_file_len(file_path):
        fp = open(file_path)
        lines = fp.readlines()
        fp.close( )
        return len(lines)
    history = model.fit_generator(
                                generator=train_datagen.flow_from_directory(
                                    file_path=train_file_path, data_dir=data_dir, data_suffix='.jpg',
                                    label_dir=label_dir, label_suffix='.png', nb_classes=nb_classes,
                                    target_size=target_size, color_mode='rgb',
                                    batch_size=batch_size, shuffle=True
                                ),
                                samples_per_epoch=get_file_len(train_file_path),
                                nb_epoch=nb_epoch,
                                callbacks=[scheduler, tfboard, checkpoint, train_state],
                                validation_data=val_datagen.flow_from_directory(
                                    file_path=val_file_path, data_dir=data_dir, data_suffix='.jpg',
                                    label_dir=label_dir, label_suffix='.png', nb_classes=nb_classes,
                                    target_size=target_size, color_mode='rgb',
                                    batch_size=batch_size, shuffle=False
                                ),
                                nb_val_samples=get_file_len(val_file_path)
                            )
    model.save(save_path+'/final_model.hdf5')
示例#11
0
def train(batch_size, 
          epochs, 
          lr_base, 
          lr_power, 
          weight_decay, 
          classes,
          model_name, 
          train_file_path, 
          val_file_path,
          data_dir, 
          label_dir, 
          target_size=None, 
          batchnorm_momentum=0.9,
          resume_training=False, 
          class_weight=None, 
          dataset='VOC2012',
          loss_fn=softmax_sparse_crossentropy_ignoring_last_label,
          metrics=[sparse_accuracy_ignoring_last_label],
          loss_shape=None,
          label_suffix='.png',
          data_suffix='.jpg',
          ignore_label=255,
          label_cval=255):
    
    if target_size:
        input_shape = target_size + (3,)
    else:
        input_shape = (None, None, 3)
        
    batch_shape = (batch_size,) + input_shape
    
    
    # PATH
    current_dir = os.path.dirname(os.path.realpath(__file__))
    save_path = os.path.join(current_dir, 'Models/' + model_name)
    checkpoint_path = os.path.join(save_path, 'checkpoint_weights.hdf5')
    img_path = os.path.join(save_path, "model.png")
    
    if os.path.exists(save_path) is False:
        os.mkdir(save_path)

    
    # make model
    model = globals()[model_name](weight_decay=weight_decay,
                                  input_shape=input_shape,
                                  batch_momentum=batchnorm_momentum,
                                  classes=classes)

    # compile model
    optimizer = SGD(lr=lr_base, momentum=0.9)

    model.compile(loss=loss_fn,
                  optimizer=optimizer,
                  metrics=metrics)
    
    if resume_training:
        model.load_weights(checkpoint_path, by_name=True)
    
    model.summary()
    
    
    # save model structure        
    model_path = os.path.join(save_path, "model.json")
    with open(model_path, "w") as f:
        model_json = model.to_json()
        f.write(model_json)
    
    
    # set callbacks
    lrcb = LearningRateScheduler(lr_scheduler(epoch, mode='power_decay')) 
    tbcb = TensorBoard(log_dir=os.path.join(save_path, 'logs'), histogram_freq=10, write_graph=True)
    cpcb = ModelCheckpoint(filepath=os.path.join(save_path, 'checkpoint_weights.hdf5'), save_weights_only=True)

    callbacks = []
    callbacks.append(lrcb)
    callbacks.append(tbcb)
    callbacks.append(cpcb)
    
    
    
    # set data generator and train
    train_datagen = SegDataGenerator(zoom_range=[0.5, 2.0],
                                     zoom_maintain_shape=True,
                                     crop_mode='random',
                                     crop_size=target_size,
                                     # pad_size=(505, 505),
                                     rotation_range=0.,
                                     shear_range=0,
                                     horizontal_flip=True,
                                     channel_shift_range=20.,
                                     fill_mode='constant',
                                     label_cval=label_cval)
    val_datagen = SegDataGenerator()

    

    
    with open(train_file_path) as fp:
        train_file_length = fp.readlines()
    steps_per_epoch = int(np.ceil(train_file_length / float(batch_size)))

    # from Keras documentation: Total number of steps (batches of samples) to yield from generator before declaring one epoch finished
    # and starting the next epoch. It should typically be equal to the number of unique samples of your dataset divided by the batch size.
    

    # model fitting
    history = model.fit_generator(
        generator=train_datagen.flow_from_directory(
            file_path=train_file_path,
            data_dir=data_dir, data_suffix=data_suffix,
            label_dir=label_dir, label_suffix=label_suffix,
            classes=classes,
            target_size=target_size, color_mode='rgb',
            batch_size=batch_size, shuffle=True,
            loss_shape=loss_shape,
            ignore_label=ignore_label,
            # save_to_dir='Images/'
        ),
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        callbacks=callbacks,
        workers=4,
        class_weight=class_weight
       )
        
        '''