示例#1
0
ptvsd.enable_attach(address=('localhost', 6790))
# ptvsd.wait_for_attach() # Only include this line if you always want to manually attach the debugger

from LayoutAndStyleUtils import (Grid, Cell, BlockContainerStyler)
BlockContainerStyler().set_default_block_container_style()

# --------------------------------------------------------------------------------
messageboard = st.empty()

from utils import SessionState
# Session State variables:
session_state = SessionState.get(
    message='To use this application, please login...',
    token={
        'value': None,
        'expiry': None
    },
    user=None,
    email=None,
    report=[],
)

# --------------------------------------------------------------------------------

# import must come after messageboard as these apps use app.messageboard
import dumb_app, dumber_app, login_app, logout_app


def main():
    pages = {
        'DuMMMy aPp [1]': [dumb_app.main],  # DUMMY APP 1
        'DUmmmY ApP [2]': [dumber_app.main],  # DUMMY APP 2
示例#2
0
# This is a sample Python script.
import streamlit as st
import time
import cv2 as cv
import numpy as np
from PIL import Image
from utils import SessionState  # Assuming SessionState.py lives on this folder
from utils.cv_filters import strel_line, imadjust, gaussian_kernel, wiener_filter, laplacianOfGaussian

session = SessionState.get(run_id=0)


def main():
    image_s = None
    image_h = None
    st.title("Dermoscopy Images Preprocessing")
    process = st.sidebar.radio('Type of process', ('Registration', 'Shaver'))
    with st.beta_container():
        if process == 'Registration':
            st.title("Registration")
            st.sidebar.write('You selected registration')
            # Add a slider to the sidebar:
            austerity = st.sidebar.slider('Austerity', 1.0, 100.0, (70.0))
            minimum = st.sidebar.slider('Minimum matches', 0.0, 1000.0, (10.0))
            MIN_MATCH_COUNT = minimum
            sample = st.file_uploader("Choose an sample image...")
            if sample is not None:
                image_s = Image.open(sample)
                st.image(image_s, caption='Sample Image', width=300)
            history = st.file_uploader("Choose a history image...")
            if history is not None:
示例#3
0
from math import sqrt

from utils import SessionState

import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error

import altair as alt
import streamlit as st

np.random.seed(0)
X_MIN = 0
X_MAX = 1

state = SessionState.get(min_rmse=999)


@dataclass
class Weight:
    w0: float
    w1: float
    w2: float


@st.cache
def build_dataset(xres):
    X_source = np.linspace(X_MIN, X_MAX, xres)
    y_source = (
        np.polynomial.polynomial.polyval(X_source, [0, 2, 5])
        + np.sin(8 * X_source)
示例#4
0
            padding-bottom: {padding_bottom}rem;
        }}
        .reportview-container .main {{
            color: {COLOR};
            background-color: {BACKGROUND_COLOR};
        }}
    </style>
    """,
        unsafe_allow_html=True,
    )
    sessions = session.get(key=0,
                           id=0,
                           trainer_params={},
                           trainer_dict={
                               "id": [],
                               "dataloader": [],
                               "model": [],
                               "loss": [],
                               "optimizer": [],
                               "scheduler": [],
                               "metrics": []
                           })

    st.sidebar.title("目录")
    cur = st.sidebar.radio("catalogue", ("Trainer", "Eval"))
    if cur == "Trainer":
        data_selections = []
        for name, obj in inspect.getmembers(data_module, inspect.isclass):
            if "data_loader.data_loaders" in str(obj):
                data_selections.append(str(obj)[33:-12])
        model_selections = []
        for name, obj in inspect.getmembers(model_module, inspect.isclass):
def main():
    st.set_page_config(page_title = "Traffic Flow Counter", 
    page_icon=":vertical_traffic_light:")

    obj_detector = load_obj_detector(config, wt_file)
    tracker = tc.CarsInFrameTracker(num_previous_frames = 10, frame_shape = (720, 1080))

    state = SessionState.get(upload_key = None, enabled = True, 
    start = False, conf = 70, nms = 50, run = False)
    hide_streamlit_widgets()
    """
    #  Traffic Flow Counter :blue_car:  :red_car:
    Upload a video file to track and count vehicles. Don't forget to change parameters to tune the model!

    #### Features to be added in the future:
    + speed measurement
    + traffic density
    + vehicle type distribution
    """

    with st.sidebar:
        """
        ## :floppy_disk: Parameters  

        """
        state.conf, state.nms = parameter_sliders(
            keys, state.enabled, value = [state.conf, state.nms])
        
        st.text("")
        st.text("")
        st.text("")

        """
        #### :desktop_computer: [Source code in Github](https://github.com/aldencabajar/traffic_flow_counter)

        """

    #set model confidence and nms threshold 
    if (state.conf is not None):
        obj_detector.confidence = state.conf/ 100
    if (state.nms is not None):
        obj_detector.nms_threshold = state.nms/ 100 



    upload = st.empty()
    start_button = st.empty()
    stop_button = st.empty()

    with upload:
        f = st.file_uploader('Upload Video file (mpeg/mp4 format)', key = state.upload_key)
    if f is not None:
        tfile  = tempfile.NamedTemporaryFile(delete = True)
        tfile.write(f.read())

        upload.empty()
        vf = cv2.VideoCapture(tfile.name)

        if not state.run:
            start = start_button.button("start")
            state.start = start
        
        if state.start:
            start_button.empty()
            #state.upload_key = str(randint(1000, int(1e6)))
            state.enabled = False
            if state.run:
                tfile.close()
                f.close()
                state.upload_key = str(randint(1000, int(1e6)))
                state.enabled = True
                state.run = False
                ProcessFrames(vf, tracker, obj_detector, stop_button)
            else:
                state.run = True
                trigger_rerun()
示例#6
0
def main():
    #st.set_page_config(page_title = "Continuous Sign Language Recognition")
    st.markdown("### Model Architecture")

    st.image(
        f'/app/architecture.png',
        caption='Architecture overview',
        use_column_width=True
    )

    base_size = [256, 256]
    crop_size = [224, 224]
    random_crop = False
    p_drop = 0.5
    random_drop = False

    transform_phoenix = transforms.Compose(
    [
        transforms.Resize(base_size),
        transforms.RandomCrop(crop_size)
        if random_crop
        else transforms.CenterCrop(crop_size),
        transforms.ToTensor(),
        #transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        transforms.Normalize([0.53724027, 0.5272855, 0.51954997], [1, 1, 1])
    ]
    )

    transform_krsl = transforms.Compose(
    [
        transforms.Resize(base_size),
        transforms.RandomCrop(crop_size)
        if random_crop
        else transforms.CenterCrop(crop_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        #transforms.Normalize([0.53724027, 0.5272855, 0.51954997], [1, 1, 1])
    ]
    )


    state = SessionState.get(upload_key = None, enabled = True,
    start = False, conf = 70, nms = 50, run = False, upload_db = False)
    hide_streamlit_widgets()

    """

    # Continuous Sign Language Recogntion

    """

    with open("/app/phrases.txt", "r") as f:
        lines = f.readlines()

    my_phrases = [""] + [line.strip().split("\t")[1] for line in lines]

    with open("/app/app/test_ids.txt", "r") as f:
        ids = f.readlines()

    signer_ids = [""] + [id.strip() for id in ids]
    phrase_dict = {line.strip().split("\t")[1]:line.strip().split("\t")[0] for line in lines}

    with st.sidebar:
        """

        ## :floppy_disk: Stochastic CSLR model
        SOTA among single cue models


        """

        #state.conf, state.nms = parameter_sliders(

        #    keys, state.enabled, value = [state.conf, state.nms])

        st.text("")

        st.text("")

        st.text("")

        lang = st.radio("Select language: ", ('Russian', 'German'))

        backbone = st.sidebar.selectbox(
            label = 'Please choose the backbone for Stochastic CSLR',

            options = [
                'ResNet18'
            ],

            index = 0,

            key = 'backbone'

        )

        phrase = st.sidebar.selectbox(
            label = "Please select the phrase for K-RSL dataset here",

            options = my_phrases,

            index = 0,

            key = 'phrase'
        )

        signer_id = st.sidebar.selectbox(
            label = "Please select the signer id for K-RSL dataset here",

            options = signer_ids,

            index = 0,

            key = 'signer_id'
        )

    upload = st.empty()
    start_button = st.empty()
    stop_button = st.empty()

    with upload:
        f = st.file_uploader('Upload Video file (mpeg/mp4 format)', key = state.upload_key)

    if lang == "Russian" and len(phrase) != 0 and len(signer_id) != 0:
        video_path = "/app/test_videos/" + str(phrase_dict[phrase]) + "/" + "P" + str(signer_id) + "_" + "S" + str(phrase_dict[phrase]) + "_" + "00.mp4"

        if not os.path.exists(video_path):
            st.info("The video is not in the database!")
            return

        vf = cv2.VideoCapture(video_path)
        vf = cv2.VideoCapture(video_path)
        frames = get_frames(video_path=video_path)
        indices = sample_indices(n=len(frames), p_drop=p_drop, random_drop=random_drop)
        frames = [Image.fromarray(frames[i].asnumpy(), 'RGB') for i in indices]

        if lang == "Russian":
            frames = map(transform_krsl, frames)
        else:
            frames = map(transform_phoenix, frames)

        frames = np.stack(list(frames))

        if lang == "Russian":
            epoch = 18
            vocab = create_vocab(split="train_rus", sep=",")
        else:
            vocab = create_vocab(split="train_ger", sep="|")

            if backbone == "ResNet18":
                epoch = 100
            else:
                epoch = 200

        hyp = inference(epoch, vocab, frames, lang)

        if not state.run:
            start_button.empty()
            start = start_button.button("PREDICT")
            state.start = start

        if state.start:
            start_button.empty()
            state.enabled = False

            if state.run:
                if phrase in phrase_dict:
                    phrase_id = phrase_dict[phrase]

                state.upload_key = str(randint(1000, int(1e6)))
                state.enabled = True
                state.run = False
                ProcessFrames(vf, stop_button, hyp, video_path, phrase_id, signer_ids, state)
            else:
                state.run = True
                trigger_rerun()


    if f is not None:
        tfile  = tempfile.NamedTemporaryFile(delete = False)
        tfile.write(f.read())

        upload.empty()
        vf = cv2.VideoCapture(tfile.name)
        frames = get_frames(video_path=tfile.name)
        indices = sample_indices(n=len(frames), p_drop=p_drop, random_drop=random_drop)
        frames = [Image.fromarray(frames[i].asnumpy(), 'RGB') for i in indices]

        if lang == "Russian":
            frames = map(transform_krsl, frames)
        else:
            frames = map(transform_phoenix, frames)

        frames = np.stack(list(frames))

        if lang == "Russian":
            epoch = 18
            vocab = create_vocab(split="train_rus", sep=",")
        else:
            vocab = create_vocab(split="train_ger", sep="|")

            if backbone == "ResNet18":
                epoch = 100
            else:
                epoch = 200

        hyp = inference(epoch, vocab, frames, lang)

        if not state.run:
            start_button.empty()
            start = start_button.button("PREDICT ")
            state.start = start

            with open("/app/app/upload.txt") as f:
                bool = int(f.readline())
            phrase_id = None
            if phrase in phrase_dict:
                    phrase_id = phrase_dict[phrase]

            if bool and phrase_id != None:
                up = upload.button("UPLOAD TO DATABASE")
                state.upload_db = up

        if state.upload_db:
            with open("/app/app/test_ids.txt", "a") as f:
                if "51" not in signer_ids:
                    f.write("51\n")

                shutil.move(tfile.name, f"/app/test_videos/{phrase_id}/P51_S{phrase_id}_00.mp4")
                st.info("The data was successfully uploaded to the database!")
            state.run = False



        if state.start:
            start_button.empty()
            state.enabled = False

            if state.run:
                f.close()
                state.upload_key = str(randint(1000, int(1e6)))
                state.enabled = True
                state.run = False
                phrase_id = None

                if phrase in phrase_dict:
                    phrase_id = phrase_dict[phrase]

                ProcessFrames(vf, stop_button, hyp, tfile, phrase_id, signer_ids, state)
            else:
                state.run = True
                trigger_rerun()
示例#7
0
    return case_md


@fancy_cache(unique_to_session=True, allow_output_mutation=True)
def get_static_store() -> Dict:
    """This dictionary is initialized once and can be used to store the files uploaded"""
    return {}


select_block_container_style()

nltk.download("punkt")

st.title("Рулетка кейсов")

state = SessionState.get(cases=[], played_inds=[], orig_case_num=0, file_value=None)

menu_state = st.radio("Показать меню", ["Показать", "Скрыть"], 0)
static_store = get_static_store()

file_picker = st.empty()
file_buffer = file_picker.file_uploader("Загрузите файл с кейсами", type="txt")

if file_buffer:
    value = file_buffer.getvalue()
    if value not in static_store.values():
        static_store[file_buffer.getvalue()] = value
else:
    static_store.clear()