def __init__(self, path: str): super(FlickrDataset2, self).__init__() self._path = path self._class_mapping = {} # class number -> class label self._images = {} self.read() self._class_mapping_inverted = {v: k for k, v in self._class_mapping.items()} # class label -> class number self._class_groups = self._build_groups() self._images_path = list(self._images.keys()) self.process_image_pipeline = transforms.Compose([ transforms.ToTensor(), transforms.Resize(256), transforms.CenterCrop(224), RotationTransform(90), ToRGB(), # transforms.Normalize(self.mean, self.std), ])
if not os.path.isdir(os.path.join(args.name + '_results', 'Reconstruction')): os.makedirs(os.path.join(args.name + '_results', 'Reconstruction')) if not os.path.isdir(os.path.join(args.name + '_results', 'Transfer')): os.makedirs(os.path.join(args.name + '_results', 'Transfer')) # edge-promoting if not os.path.isdir(os.path.join('data', args.tgt_data, 'pair')): print('edge-promoting start!!') edge_promoting(os.path.join('data', args.tgt_data, 'train'), os.path.join('data', args.tgt_data, 'pair')) else: print('edge-promoting already done') # data_loader src_transform = transforms.Compose([ ToRGB(), transforms.Resize((args.input_size, args.input_size)), transforms.ToTensor(), RGBToBGR(), Zero(), ]) tgt_transform = transforms.Compose([ ToRGB(), transforms.Resize(args.input_size), transforms.ToTensor(), RGBToBGR(), Zero(), ]) src_transform_test = transforms.Compose([
torch.backends.cudnn.benchmark = True G = networks.Transformer() if torch.cuda.is_available(): G.load_state_dict(torch.load(args.pre_trained_model)) else: # cpu mode G.load_state_dict( torch.load(args.pre_trained_model, map_location=lambda storage, loc: storage)) G.to(device) G.eval() src_transform = transforms.Compose([ ToRGB(), RatioedResize(args.input_size), transforms.ToTensor(), RGBToBGR(), Zero(), ]) # utils.data_load(os.path.join('data', args.src_data), 'test', src_transform, 1, shuffle=True, drop_last=True) image_src = utils.data_load(os.path.join(args.image_dir), 'test', src_transform, 1, shuffle=True, drop_last=True) with torch.no_grad(): G.eval()