示例#1
0

if __name__ == '__main__': 

    # global parameters for distance measures (Manhatten/Euclidean, sym. gem)
    squared, symmetric = True, True

    # read dataset number and split number
    try:
        datasetN, splitN = int(sys.argv[1]), int(sys.argv[2])
    except:
        raise Exception \
             ("python2 1NNResampledTest.py datasetnumber(int) splitnumber(int)")
    
    # read the dataset
    (testLabels, testSet), (trainLabels, trainSet)  = ucr.read(datasetN)
    # merge dataset
    labels, items = ucr.merge(testLabels, testSet, trainLabels, trainSet)
    
    # open file for the logging of results
    f = open("./results/dn_%s-sn_%s-sq_%s-sy_%s" % 
            (datasetN, splitN, squared, symmetric), "w")
    
    # if splitN == 0 use UCR-split else use random split
    if splitN > 0:

        # determine split ratio from UCR canonical split and resample
        rho = float(len(trainSet))/(len(trainSet)+len(testSet))
        sss = st.StratifiedShuffleSplit(labels, 500, 
                                        test_size=rho, random_state=0)
        test_index, train_index = list(sss)[splitN-1]
示例#2
0
            bestlp, bestfulldtw, bestconstdtw, bestgem = None, None, None, None

            for line in f:
                if "BESTLP=" in line:
                    bestlp=eval(line.split("=")[1])
                if "BESTFULLDTW=" in line:
                    bestfulldtw=eval(line.split("=")[1])
                if "BESTCONSDTW=" in line:
                    bestconsdtw=eval(line.split("=")[1])
                if "BESTGEM=" in line:
                    bestgem=eval(line.split("=")[1])
            
            gainresult.append((bestconsdtw[2]-bestgem[2]))
            cdtwresult.append(bestconsdtw[2])
            gemresult.append(bestgem[2])
            eucresult.append(bestlp[2])
            dtwresult.append(bestfulldtw[2])
            
    if np.mean(gainresult) < 0:
        print datasetN, "\t", ucr.datasetName(datasetN), "%1.4f +/- %1.4f" % (np.mean(gainresult), np.std(gainresult)), \
              "   %1.4f" % (np.mean(gainresult)/np.std(gainresult)), 
    else:
        print datasetN, "\t", ucr.datasetName(datasetN), " %1.4f +/- %1.4f" % (np.mean(gainresult),np.std(gainresult)), \
              "    %1.4f" % (np.mean(gainresult)/np.std(gainresult)), 
          
    print "   %1.4f +/- %1.4f" % (np.mean(cdtwresult), np.std(cdtwresult)),
    print "   %1.4f +/- %1.4f" % (np.mean(gemresult), np.std(gemresult)),
    print "   %1.4f +/- %1.4f" % (np.mean(eucresult), np.std(eucresult)),
    print "   %1.4f +/- %1.4f" % (np.mean(dtwresult), np.std(dtwresult))
示例#3
0
import utils.kNNClassifier as cl

if __name__ == '__main__':

    # global parameters for distance measures (Manhatten/Euclidean, sym. gem)
    squared, symmetric = True, True

    # read dataset number and split number
    try:
        datasetN, splitN = int(sys.argv[1]), int(sys.argv[2])
    except:
        raise Exception \
             ("python2 1NNResampledTest.py datasetnumber(int) splitnumber(int)")

    # read the dataset
    (testLabels, testSet), (trainLabels, trainSet) = ucr.read(datasetN)
    # merge dataset
    labels, items = ucr.merge(testLabels, testSet, trainLabels, trainSet)

    # open file for the logging of results
    f = open(
        "./results/dn_%s-sn_%s-sq_%s-sy_%s" %
        (datasetN, splitN, squared, symmetric), "w")

    # if splitN == 0 use UCR-split else use random split
    if splitN > 0:

        # determine split ratio from UCR canonical split and resample
        rho = float(len(trainSet)) / (len(trainSet) + len(testSet))
        sss = st.StratifiedShuffleSplit(labels,
                                        500,
示例#4
0
            bestlp, bestfulldtw, bestconstdtw, bestgem = None, None, None, None

            for line in f:
                if "BESTLP=" in line:
                    bestlp = eval(line.split("=")[1])
                if "BESTFULLDTW=" in line:
                    bestfulldtw = eval(line.split("=")[1])
                if "BESTCONSDTW=" in line:
                    bestconsdtw = eval(line.split("=")[1])
                if "BESTGEM=" in line:
                    bestgem = eval(line.split("=")[1])

            gainresult.append((bestconsdtw[2] - bestgem[2]))
            cdtwresult.append(bestconsdtw[2])
            gemresult.append(bestgem[2])
            eucresult.append(bestlp[2])
            dtwresult.append(bestfulldtw[2])

    if np.mean(gainresult) < 0:
        print datasetN, "\t", ucr.datasetName(datasetN), "%1.4f +/- %1.4f" % (np.mean(gainresult), np.std(gainresult)), \
              "   %1.4f" % (np.mean(gainresult)/np.std(gainresult)),
    else:
        print datasetN, "\t", ucr.datasetName(datasetN), " %1.4f +/- %1.4f" % (np.mean(gainresult),np.std(gainresult)), \
              "    %1.4f" % (np.mean(gainresult)/np.std(gainresult)),

    print "   %1.4f +/- %1.4f" % (np.mean(cdtwresult), np.std(cdtwresult)),
    print "   %1.4f +/- %1.4f" % (np.mean(gemresult), np.std(gemresult)),
    print "   %1.4f +/- %1.4f" % (np.mean(eucresult), np.std(eucresult)),
    print "   %1.4f +/- %1.4f" % (np.mean(dtwresult), np.std(dtwresult))