def main(new_arg): cfg = cfg_from_args(my_argparser(), new_arg) if not cfg: return if cfg['program']['return'] == '<cfg_from_args>': # to help testing return cfg l = init_logging(logging, None, cfg['program']['log'], cfg['program']['verbose']) print('\n' + this_prog_basename(__file__), end=' started. ') try: cfg['in']['paths'], cfg['in']['nfiles'], cfg['in'][ 'path'] = init_file_names(**cfg['in'], b_interact=cfg['program']['b_interact']) except Ex_nothing_done as e: print(e.message) return () # cfg = {'in': {}} # cfg['in']['path'] = \ # r'd:\workData\BalticSea\181005_ABP44\navigation\2018-10-06tracks_copy.gpx' # r'd:\WorkData\_experiment\_2017\tracker\170502.gpx' # r'd:\workData\_experiment\2016\GPS_tracker\sms_backup\sms-20160225135922.gpx' for ifile, nameFull in enumerate(cfg['in']['paths'], start=1): print('{}. {}'.format(ifile, nameFull), end=', ') gpx2csv(nameFull)
def main(new_arg=None): new_arg = [ r'.\h5toGpx_CTDs.ini', '--db_path', r'd:\workData\BalticSea\170614_ANS34\170614Strahov.h5', '--path', r'd:\workData\BalticSea\170614_ANS34\Baklan\2017*p1d5.txt', '--gpx_names_fun_format', '+{:02d}', '--gpx_symbols_list', "'Navaid, Orange'" ] # 'db_path', r'd:\workData\BalticSea\171003_ANS36\171003Strahov.h5' cfg = cfg_from_args(my_argparser(), new_arg) if not cfg: return if new_arg == '<return_cfg>': # to help testing return cfg print('\n' + this_prog_basename(__file__), 'started', end=' ') if not cfg['out']['path'].is_absolute(): cfg['out']['path'] = cfg['in']['db_path'].parent / cfg['out'][ 'path'] # set relative to cfg['in']['db_path'] try: print(end='Data ') cfg['in']['paths'], cfg['in']['nfiles'], cfg['in'][ 'path'] = init_file_names(**cfg['in']) # may interact except Ex_nothing_done as e: print(e.message) return # or raise FileNotFoundError? itbl = 0 # compile functions if defined in cfg or assign default gpx_symbols = init_gpx_symbols_fun(cfg['out']) gpx_names_funs = ["i+1"] gpx_names_fun = eval( compile( "lambda i, row: '{}'.format({})".format( cfg['out']['gpx_names_fun_format'], gpx_names_funs[itbl]), [], 'eval')) tim = filename2date([f for f in ge_names(cfg)]) with pd.HDFStore(cfg['in']['db_path'], mode='r') as storeIn: # dfL = storeIn[tblD + '/logFiles'] nav2add = h5select(storeIn, cfg['in']['table_nav'], ['Lat', 'Lon', 'DepEcho'], tim)[0] rnav_df_join = nav2add.assign( itbl=itbl) # copy/append on first/next cycle # Save to gpx waypoints # if 'gpx_names_funs' in cfg['out'] and \ # len(cfg['out']['gpx_names_funs'])>itbl: # # gpx_names = eval(compile('lambda i: str({})'.format( # cfg['out']['gpx_names_funs'][itbl]), [], 'eval')) # save_to_gpx(rnav_df_join[-len(nav2add):], cfg['out']['path'].with_name('fileNames'), gpx_obj_namef=gpx_names_fun, waypoint_symbf=gpx_symbols, cfg_proc=cfg['process'])
def main(new_arg=None): cfg = cfg_from_args(my_argparser(), new_arg) if not cfg: return if new_arg == '<return_cfg>': # to help testing return cfg l = init_logging(logging, None, cfg['program']['log'], cfg['program']['verbose']) if not cfg['out']['path'].is_absolute(): # set path relative to cfg['in']['db_path'] cfg['out']['path'] = cfg['in']['db_path'].with_name(str(cfg['out']['path'])) l.warning('\n {}({}) is gonna save gpx to ..{} dir. '.format( this_prog_basename(__file__), cfg['in']['db_path'], cfg['out']['path'].parent)) if cfg['out']['select_from_tablelog_ranges'] is None: gpx_symbols = None else: gpx_symbols = init_gpx_symbols_fun(cfg['out']) global gpx_names_funs # Shortcat for cfg['out']['gpx_names_funs'] # Load data ################################################################# qstr_trange_pattern = "index>=Timestamp('{}') & index<=Timestamp('{}')" with pd.HDFStore(cfg['in']['db_path'], mode='r') as store: # Find tables by pattern if '*' in cfg['in']['tables'][0]: # if 'table_prefix' in cfg['in'] pattern_tables = cfg['in']['tables'][0] cfg['in']['tables'] = h5find_tables(store, pattern_tables) len_tables = len(cfg['in']['tables']) msg = 'Found {} tables with pattern {}'.format(len_tables, pattern_tables) if len_tables: l.info(msg) else: raise Ex_nothing_done(msg + '!') gpx_names_funs = [] for itbl in range(len(cfg['in']['tables'])): # same fo each table gpx_names_funs.append(cfg['out']['gpx_names_funs'][0]) else: # fixed number of tables # initialise with defaults if need: gpx_names_funs = cfg['out']['gpx_names_funs'] for itbl in range(len(gpx_names_funs), len(cfg['in']['tables'])): gpx_names_funs.append('i+1') dfs_rnav = [] tbl_names_all_shortened = [] for itbl, tblD in enumerate(cfg['in']['tables']): print(itbl, '. ', tblD, end=': ', sep='') if cfg['in']['tables_log'][0]: tblL = tblD + '/' + cfg['in']['tables_log'][0] try: dfL = store[tblL] except KeyError as e: l.warning(' '.join([s for s in e.args if isinstance(s, str)])) continue else: # only for tables without log (usually no such tables) l.warning('configuration specifies to get data without use of "log..." tables') st_en = store[tblD].index[[0, -1]] if cfg['process']['period_files']: t_intervals_start = pd.date_range( start=st_en[0].normalize(), end=max(st_en[-1], st_en[-1].normalize() + pd_period_to_timedelta( cfg['process']['period_files'])), freq=cfg['process']['period_files'])[1:] # makes last t_interval_start >= all_data[-1] dfL = pd.DataFrame.from_records({'DateEnd': t_intervals_start, 'fileName': tblD}, index=st_en[:1].append(t_intervals_start[:-1])) else: dfL = pd.DataFrame.from_records({'DateEnd': st_en[-1], 'fileName': tblD}, index=st_en[:1]) gpx_names_fun_str = "lambda i, row, t=0: '{}'.format({})".format( cfg['out']['gpx_names_fun_format'], gpx_names_funs[itbl]) gpx_names_fun = eval(compile(gpx_names_fun_str, '', 'eval')) if cfg['out']['select_from_tablelog_ranges'] is None: # Use all data for ranges specified in log rows and saves tracks (not points) for irow, r in enumerate(dfL.itertuples()): # iterrows() qstr = qstr_trange_pattern.format(r.Index, r.DateEnd) print(qstr, end='... ') try: dfD = store.select(cfg['in']['table_nav' ] if cfg['in']['table_nav'] else tblD, qstr, columns=['Lat', 'Lon', 'DepEcho']) except Exception as e: l.exception('Error when query: {}. '.format(qstr)) # '\n==> '.join([s for s in e.args if isinstance(s, str)]))) continue # Keep data with period = 1s only dfD = dfD[~dfD.index.round(pd.Timedelta(seconds=1)).duplicated()] # dfD.drop_duplicates(['Lat', 'Lon', 'index'])' bGood = filterGlobal_minmax(dfD, dfD.index, cfg['filter']) dfD = dfD[bGood] # Add UTC time and table name to output file name # Local time and table name to gpx object name str_time_long = '{:%y%m%d_%H%M}'.format(r.Index) r = r._replace(Index=timzone_view(r.Index, cfg['out']['dt_from_utc_in_comments'])) tblD_safe = file_from_tblname(tblD, cfg['in']['tables_log'][0]) try: gpx_names_fun_result = gpx_names_fun(tblD_safe, r) # '{:%y%m%d}'.format(timeLocal) except TypeError as e: raise TypeError('Can not evalute gpx_names_fun "{}"'.format(gpx_names_fun_str)).with_traceback( e.__traceback__) save_to_gpx( dfD, cfg['out']['path'].with_name(f'{str_time_long}{tblD_safe}'), gpx_obj_namef=gpx_names_fun_result, cfg_proc=cfg['process']) if len(cfg['in']['tables']) > 1: nav2add_cur = dfD if irow == 0 else nav2add_cur.append(dfD) if len(cfg['in']['tables']) > 1: nav2add_cur = dfD.assign(itbl=itbl) else: # Use only 1 data point per log row if cfg['out']['select_from_tablelog_ranges'] != 0: print('selecting from {} row index of log table'.format( cfg['out']['select_from_tablelog_ranges'])) try: dfL.index = dfL.index.tz_convert('UTC') except TypeError as e: print((e.msg if hasattr(e, 'msg') else str(e)) + '!\n- continue presume on UTC log index...') print(end='all log data ') time_points = (dfL.index if cfg['out']['select_from_tablelog_ranges'] == 0 else dfL['DateEnd'] if cfg['out']['select_from_tablelog_ranges'] == -1 else None) if time_points is None: raise (ValueError("cfg['out']['select_from_tablelog_ranges'] must be 0 or -1")) cols_nav = ['Lat', 'Lon', 'DepEcho'] nav2add = h5select(store, cfg['in']['table_nav'], cols_nav, time_points=time_points, dt_check_tolerance=cfg['process']['dt_search_nav_tolerance'], query_range_lims=(time_points[0], dfL['DateEnd'][-1]) )[0] cols_nav = nav2add.columns # not all columns may be loaded # Try get non NaN from dfL if it has needed columns (we used to write there edges' data with _st/_en suffixes) isna = nav2add.isna() dfL_col_suffix = 'st' if cfg['out']['select_from_tablelog_ranges'] == 0 else 'en' for col in cols_nav: col_dat = f'{col}_{dfL_col_suffix}' if isna[col].any() and col_dat in dfL.columns: b_use = isna[col].values & dfL[col_dat].notna().values nav2add.loc[b_use, col] = dfL.loc[b_use, col_dat].values nav2add.index = timzone_view(nav2add.index, dt_from_utc=cfg['out']['dt_from_utc_in_comments']) # tz_local= tzoffset(None, cfg['out']['dt_from_utc_in_comments'].total_seconds()) # if nav2add.index.tz is None: # # think if time zone of tz-naive Timestamp is naive then it is UTC # nav2add.index = nav2add.index.tz_localize('UTC') # nav2add.tz_convert(tz_local, copy= False) # Save to gpx waypoints nav2add_cur = nav2add.assign(itbl=itbl) # if 'gpx_names_funs' in cfg['out'] and \ # len(cfg['out']['gpx_names_funs'])>itbl: # # gpx_names = eval(compile('lambda i: str({})'.format( # cfg['out']['gpx_names_funs'][itbl]), [], 'eval')) # save_to_gpx(nav2add_cur, cfg['out']['path'] / f"stations_{file_from_tblname(tblD, cfg['in']['tables_log'][0])}", gpx_obj_namef=gpx_names_fun, waypoint_symbf=gpx_symbols, cfg_proc=cfg['process'] ) # save_to_csv(nav2add, dfL.index, cfg['out']['path'].with_name(f'nav{tblD}.txt')) if False: # Show table info store.get_storer(tblD).table nodes = sorted(store.root.__members__) # , key=number_key print(nodes) # store.get_node('CTD_Idronaut(Redas)').logFiles # next level nodes # prepare saving of combined gpx if tbl_names_all_shortened: i_new = 0 for c_prev, c_new in zip(tbl_names_all_shortened[-1], tblD): if c_new == c_prev: i_new += 1 else: break tbl_names_all_shortened.append(tblD[i_new:]) else: tbl_names_all_shortened.append(tblD) dfs_rnav.append(nav2add_cur) if len(cfg['in']['tables']) > 1 and cfg['out']['gpx_names_funs_cobined']: print('combined: ', end='') # Save combined data to gpx df_rnav_combined = pd.concat(dfs_rnav) df_rnav_combined.sort_index(inplace=True) # Save to gpx waypoints if 'gpx_names_funs' in cfg['out']['gpx_names_funs_cobined']: gpx_names_funs = [ # row not used, it is here only for compability with tracks eval(compile("lambda i: " + f, '', 'eval')) for f in gpx_names_funs] gpx_names_fun = eval(compile( "lambda i,row,t: '{gpx_names_fun_format}'.format({gpx_names_funs_cobined})".format_map( cfg['out']), '', 'eval')) # gpx_symbols = lambda row: cfg['out']['gpx_symbols'][sym_index_fun(row)] # gpx_names = eval(compile("lambda i,row: '{gpx_names_fun_format}'.format({gpx_names_funs_cobined})".format_map(cfg['out']), '', 'eval')) # gpx_names = lambda i: str(i + 1) save_to_gpx( df_rnav_combined, cfg['out']['path'].with_name( 'all_' + file_from_tblname(','.join(tbl_names_all_shortened), cfg['in']['tables_log'][0])), gpx_obj_namef=gpx_names_fun, waypoint_symbf=gpx_symbols, cfg_proc=cfg['process']) print('Ok')
def main(new_arg=None, **kwargs): """ :param new_arg: list of strings, command line arguments :kwargs: dicts of dictcts (for each ini section): specified values overwrites ini values """ # global l cfg = cfg_from_args(my_argparser(), new_arg, **kwargs) cfg['in']['db_coefs'] = Path(cfg['in']['db_coefs']) for path_field in ['db_coefs', 'path_cruise']: if not cfg['in'][path_field].is_absolute(): cfg['in'][path_field] = ( cfg['in']['cfgFile'].parent / cfg['in'][path_field] ).resolve().absolute() # cfg['in']['cfgFile'].parent / def constant_factory(val): def default_val(): return val return default_val for lim in ('min_date', 'max_date'): cfg['filter'][lim] = defaultdict( constant_factory(cfg['filter'][lim].get( '0', cfg['filter'][lim].get(0))), cfg['filter'][lim]) l = init_logging(logging, None, None, 'INFO') #l = init_logging(logging, None, cfg['program']['log'], cfg['program']['verbose']) if True: # False. Experimental speedup but takes memory from dask.cache import Cache cache = Cache(2e9) # Leverage two gigabytes of memory cache.register() # Turn cache on globally if cfg['program']['dask_scheduler']: if cfg['program']['dask_scheduler'] == 'distributed': from dask.distributed import Client client = Client( processes=False ) # navigate to http://localhost:8787/status to see the diagnostic dashboard if you have Bokeh installed # processes=False: avoide inter-worker communication for computations releases the GIL (numpy, da.array) # without is error else: if cfg['program']['dask_scheduler'] == 'synchronous': l.warning('using "synchronous" scheduler for debugging') import dask dask.config.set(scheduler=cfg['program']['dask_scheduler']) # Run steps : st.start = cfg['program']['step_start'] st.end = cfg['program']['step_end'] st.go = True if not cfg['out'][ 'db_name']: # set name by 'path_cruise' name or parent if it has digits at start. priority for name is "*inclinometer*" for p in (lambda p: [p, p.parent])(cfg['in']['path_cruise']): m = re.match('(^[\d_]*).*', p.name) if m: break cfg['out']['db_name'] = f"{m.group(1).strip('_')}incl.h5" cfg['in']['path_cruise'].glob('*inclinometer*') dir_incl = next((d for d in cfg['in']['path_cruise'].glob('*inclinometer*') if d.is_dir()), cfg['in']['path_cruise']) db_path = dir_incl / cfg['out']['db_name'] # --------------------------------------------------------------------------------------------- def fs(probe, name): return 5 # if 'w' in name.lower(): # Baranov's wavegauge electronic # return 5 # 10 # if probe < 20 or probe in [23, 29, 30, 32, 33]: # 30 [4, 11, 5, 12] + [1, 7, 13, 30] # return 5 # if probe in [21, 25, 26] + list(range(28, 35)): # return 8.2 # return 4.8 def datetime64_str(time_str: Optional[str] = None) -> np.ndarray: """ Reformat time_str to ISO 8601 or to 'NaT'. Used here for input in funcs that converts str to numpy.datetime64 :param time_str: May be 'NaT' :return: ndarray of strings (tested for 1 element only) formatted by numpy. """ return np.datetime_as_string(np.datetime64(time_str, 's')) probes = cfg['in']['probes'] or range( 1, 41) # sets default range, specify your values before line --- raw_root, subs_made = re.subn('INCL_?', 'INKL_', cfg['in']['probes_prefix'].upper()) if st( 1 ): # Can not find additional not corrected files for same probe if already have any corrected in search path (move them out if need) i_proc_probe = 0 # counter of processed probes i_proc_file = 0 # counter of processed files # patten to identify only _probe_'s raw data files that need to correct '*INKL*{:0>2}*.[tT][xX][tT]': raw_parent = dir_incl / '_raw' dir_out = raw_parent / re.sub( r'[.\\/ ]', '_', cfg['in']['raw_subdir'] ) # sub replaces multilevel subdirs to 1 level that correct_fun() can only make raw_parent /= cfg['in']['raw_subdir'] for probe in probes: raw_found = [] raw_pattern_file = cfg['in']['raw_pattern'].format(prefix=raw_root, number=probe) correct_fun = partial( correct_kondrashov_txt if subs_made else correct_baranov_txt, dir_out=dir_out) # if not archive: if (not '.zip' in cfg['in']['raw_subdir'].lower() and not '.rar' in cfg['in']['raw_subdir'].lower()) or raw_parent.is_dir(): raw_found = list(raw_parent.glob(raw_pattern_file)) if not raw_found: # Check if already have corrected files for probe generated by correct_kondrashov_txt(). If so then just use them raw_found = list( raw_parent.glob( f"{cfg['in']['probes_prefix']}{probe:0>2}.txt")) if raw_found: print('corrected csv file', [r.name for r in raw_found], 'found') correct_fun = lambda x: x elif not cfg['in']['raw_subdir']: continue for file_in in (raw_found or open_csv_or_archive_of_them( raw_parent, binary_mode=False, pattern=raw_pattern_file)): file_in = correct_fun(file_in) if not file_in: continue tbl = f"{cfg['in']['probes_prefix']}{probe:0>2}" # tbl = re.sub('^((?P<i>inkl)|w)_0', lambda m: 'incl' if m.group('i') else 'w', # correct name # re.sub('^[\d_]*|\*', '', file_in.stem).lower()), # remove date-prefix if in name csv2h5( [ str( Path(__file__).parent / 'ini' / f"csv_inclin_{'Kondrashov' if subs_made else 'Baranov'}.ini" ), '--path', str(file_in), '--blocksize_int', '50_000_000', # 50Mbt '--table', tbl, '--db_path', str(db_path), # '--log', str(scripts_path / 'log/csv2h5_inclin_Kondrashov.log'), # '--b_raise_on_err', '0', # ? '--b_interact', '0', '--fs_float', f'{fs(probe, file_in.stem)}', '--dt_from_utc_seconds', str(cfg['in']['dt_from_utc'].total_seconds()), '--b_del_temp_db', '1', ] + (['--csv_specific_param_dict', 'invert_magnitometr: True'] if subs_made else ['--cols_load_list', "yyyy,mm,dd,HH,MM,SS,P,U"]), **{ 'filter': { 'min_date': cfg['filter']['min_date'][probe], 'max_date': cfg['filter']['max_date'][probe], } }) # Get coefs: l.info( f"Adding coefficients to {db_path}/{tbl} from {cfg['in']['db_coefs']}" ) try: h5copy_coef(cfg['in']['db_coefs'], db_path, tbl) except KeyError as e: # Unable to open object (component not found) l.warning( 'No coefs to copy?' ) # write some dummy coefficients to can load Veusz patterns: h5copy_coef(None, db_path, tbl, dict_matrices=dict_matrices_for_h5(tbl=tbl)) except OSError as e: l.warning( 'Not found DB with coefs?' ) # write some dummy coefficients to can load Veusz patterns: h5copy_coef(None, db_path, tbl, dict_matrices=dict_matrices_for_h5(tbl=tbl)) i_proc_file += 1 else: print('no', raw_pattern_file, end=', ') i_proc_probe += 1 print('Ok:', i_proc_probe, 'probes,', i_proc_file, 'files processed.') # Calculate velocity and average if st(2): # if aggregate_period_s is None then not average and write to *_proc_noAvg.h5 else loading from that h5 and writing to _proc.h5 if not cfg['out']['aggregate_period_s']: cfg['out']['aggregate_period_s'] = [ None, 2, 600, 3600 if 'w' in cfg['in']['probes_prefix'] else 7200 ] if cfg['in']['azimuth_add']: if 'Lat' in cfg['in']['azimuth_add']: from datetime import datetime # add magnetic declination,° for used coordinates # todo: get time azimuth_add = mag_dec(cfg['in']['azimuth_add']['Lat'], cfg['in']['azimuth_add']['Lon'], datetime(2020, 9, 10), depth=-1) else: azimuth_add = 0 if 'constant' in cfg['in']['azimuth_add']: # and add constant. For example, subtruct declination at the calibration place if it was applied azimuth_add += cfg['in']['azimuth_add'][ 'constant'] # add -6.65644183° to account for calibration in Kaliningrad for aggregate_period_s in cfg['out']['aggregate_period_s']: if aggregate_period_s is None: db_path_in = db_path db_path_out = db_path.with_name( f'{db_path.stem}_proc_noAvg.h5') else: db_path_in = db_path.with_name(f'{db_path.stem}_proc_noAvg.h5') db_path_out = f'{db_path.stem}_proc.h5' # or separately: '_proc{aggregate_period_s}.h5' args = [ Path(incl_h5clc.__file__).with_name( f'incl_h5clc_{db_path.stem}.yaml'), # if no such file all settings are here '--db_path', str(db_path_in), # ! 'incl.*|w\d*' inclinometers or wavegauges w\d\d # 'incl09': '--tables_list', 'incl.*' if not cfg['in']['probes'] else f"incl.*(?:{'|'.join('{:0>2}'.format(p) for p in cfg['in']['probes'])})", '--aggregate_period', f'{aggregate_period_s}S' if aggregate_period_s else '', '--out.db_path', str(db_path_out), '--table', f'V_incl_bin{aggregate_period_s}' if aggregate_period_s else 'V_incl', '--verbose', 'INFO', #'DEBUG' get many numba messages '--b_del_temp_db', '1', # '--calc_version', 'polynom(force)', # depreshiated # '--chunksize', '20000', # '--not_joined_h5_path', f'{db_path.stem}_proc.h5', ] # if aggregate_period_s <= 5: # [s], do not need split csv for big average interval # args += (['--split_period', '1D']) if aggregate_period_s is None: # proc. parameters (if we have saved proc. data then when aggregating we are not processing) args += ([ '--max_dict', 'M[xyz]:4096', # Note: for Baranov's prog 4096 is not suited # '--timerange_zeroing_dict', "incl19: '2019-11-10T13:00:00', '2019-11-10T14:00:00'\n," # not works - use kwarg # '--timerange_zeroing_list', '2019-08-26T04:00:00, 2019-08-26T05:00:00' '--split_period', '1D' ] if subs_made else [ '--bad_p_at_bursts_starts_peroiod', '1H', ]) # csv splitted by 1day (default for no avg) and monolith csv if aggregate_period_s==600 if aggregate_period_s not in cfg['out'][ 'aggregate_period_s_not_to_text']: # , 300, 600]: args += ['--text_path', str(db_path.parent / 'text_output')] kwarg = { 'in': { 'min_date': cfg['filter']['min_date'][0], 'max_date': cfg['filter']['max_date'][0], 'timerange_zeroing': cfg['in']['timerange_zeroing'], 'azimuth_add': azimuth_add } } # If need all data to be combined one after one: # set_field_if_no(kwarg, 'in', {}) # kwarg['in'].update({ # # 'tables': [f'incl{i:0>2}' for i in min_date.keys() if i!=0], # 'dates_min': min_date.values(), # in table list order # 'dates_max': max_date.values(), # # }) # set_field_if_no(kwarg, 'out', {}) # kwarg['out'].update({'b_all_to_one_col': 'True'}) incl_h5clc.main(args, **kwarg) # Calculate spectrograms. if st(3): # Can be done at any time after step 1 def raise_ni(): raise NotImplementedError( 'Can not proc probes having different fs in one run: you need to do it separately' ) args = [ Path(incl_h5clc.__file__).with_name( f'incl_h5spectrum{db_path.stem}.yaml'), # if no such file all settings are here '--db_path', str(db_path.with_name(f'{db_path.stem}_proc_noAvg.h5')), '--tables_list', f"{cfg['in']['probes_prefix']}.*", # inclinometers or wavegauges w\d\d ## 'w02', 'incl.*', # '--aggregate_period', f'{aggregate_period_s}S' if aggregate_period_s else '', '--min_date', datetime64_str(cfg['filter']['min_date'][0]), '--max_date', datetime64_str(cfg['filter']['max_date'] [0]), # '2019-09-09T16:31:00', #17:00:00 # '--max_dict', 'M[xyz]:4096', # use if db_path is not ends with _proc_noAvg.h5 i.e. need calc velocity '--out.db_path', f"{db_path.stem.replace('incl', cfg['in']['probes_prefix'])}_proc_psd.h5", # '--table', f'psd{aggregate_period_s}' if aggregate_period_s else 'psd', '--fs_float', f"{fs(probes[0], cfg['in']['probes_prefix'])}", # (lambda x: x == x[0])(np.vectorize(fs)(probes, prefix))).all() else raise_ni() # # '--timerange_zeroing_list', '2019-08-26T04:00:00, 2019-08-26T05:00:00' # '--verbose', 'DEBUG', # '--chunksize', '20000', '--b_interact', '0', ] if 'w' in cfg['in']['probes_prefix']: args += [ '--split_period', '1H', '--dt_interval_minutes', '10', # burst mode '--fmin', '0.0001', '--fmax', '4' ] else: args += [ '--split_period', '2H', '--fmin', '0.0004', #0.0004 '--fmax', '1.05' ] incl_h5spectrum.main(args) # Draw in Veusz if st(4): b_images_only = True # False pattern_path = db_path.parent / r'vsz_5min\191119_0000_5m_incl19.vsz' # r'vsz_5min\191126_0000_5m_w02.vsz' if not b_images_only: pattern_bytes_slice_old = re.escape(b'((5828756, 5830223, None),)') # Length of not adjacent intervals, s (set None to not allow) period = '1D' length = '5m' # period # '1D' dt_custom_s = pd_period_to_timedelta( length) if length != period else None # None # 60 * 5 if True: # Load starts and assign ends t_intervals_start = pd.read_csv( cfg['in']['path_cruise'] / r'vsz+h5_proc\intervals_selected.txt', converters={ 'time_start': lambda x: np.datetime64(x, 'ns') }, index_col=0).index edges = (pd.DatetimeIndex(t_intervals_start), pd.DatetimeIndex(t_intervals_start + dt_custom_s) ) # np.zeros_like() else: # Generate periodic intervals t_interval_start, t_intervals_end = intervals_from_period( datetime_range=np.array( [ cfg['filter']['min_date']['0'], cfg['filter']['max_date']['0'] ], # ['2018-08-11T18:00:00', '2018-09-06T00:00:00'], # ['2019-02-11T13:05:00', '2019-03-07T11:30:00'], # ['2018-11-16T15:19', '2018-12-14T14:35'], # ['2018-10-22T12:30', '2018-10-27T06:30:00'], 'datetime64[s]'), period=period) edges = (pd.DatetimeIndex([t_interval_start ]).append(t_intervals_end[:-1]), pd.DatetimeIndex(t_intervals_end)) for i, probe in enumerate(probes): probe_name = f"{cfg['in']['probes_prefix']}{probe:02}" # table name in db l.info('Draw %s in Veusz: %d intervals...', probe_name, edges[0].size) # for i_interval, (t_interval_start, t_interval_end) in enumerate(zip(pd.DatetimeIndex([t_interval_start]).append(t_intervals_end[:-1]), t_intervals_end), start=1): cfg_vp = {'veusze': None} for i_interval, (t_interval_start, t_interval_end) in enumerate(zip(*edges), start=1): # if i_interval < 23: #<= 0: # TEMPORARY Skip this number of intervals # continue if period != length: t_interval_start = t_interval_end - pd.Timedelta( dt_custom_s, 's') try: # skipping absent probes start_end = h5q_interval2coord( db_path=str(db_path), table=f'/{probe_name}', t_interval=(t_interval_start, t_interval_end)) if not len(start_end): break # no data except KeyError: break # device name not in specified range, go to next name pattern_path_new = pattern_path.with_name( f"{t_interval_start:%y%m%d_%H%M}_{length}_{probe_name}.vsz" ) # Modify pattern file if not b_images_only: probe_name_old = re.match('.*((?:incl|w)\d*).*', pattern_path.name).groups()[0] bytes_slice = bytes( '(({:d}, {:d}, None),)'.format(*(start_end + np.int32([-1, 1]))), 'ascii') def f_replace(line): """ Replace in file 1. probe name 2. slice """ # if i_interval == 1: line, ok = re.subn(bytes(probe_name_old, 'ascii'), bytes(probe_name, 'ascii'), line) if ok: # can be only in same line line = re.sub(pattern_bytes_slice_old, bytes_slice, line) return line if not rep_in_file(pattern_path, pattern_path_new, f_replace=f_replace): l.warning('Veusz pattern not changed!') # break elif cfg_vp['veusze']: cfg_vp['veusze'].Load(str(pattern_path_new)) elif cfg_vp['veusze']: cfg_vp['veusze'].Load(str(pattern_path_new)) txt_time_range = \ """ "[['{:%Y-%m-%dT%H:%M}', '{:%Y-%m-%dT%H:%M}']]" \ """.format(t_interval_start, t_interval_end) print(f'{i_interval}. {txt_time_range}', end=' ') cfg_vp = veuszPropagate.main( [ Path(veuszPropagate.__file__).parent.with_name( 'veuszPropagate.ini'), # '--data_yield_prefix', '-', '--path', str( db_path ), # use for custom loading from db and some source is required '--tables_list', f'/{probe_name}', # 181022inclinometers/ \d* '--pattern_path', str(pattern_path_new), # fr'd:\workData\BalticSea\190801inclinometer_Schuka\{probe_name}_190807_1D.vsz', # str(db_path.parent / dir_incl / f'{probe_name}_190211.vsz'), #warning: create file with small name # '--before_next', 'restore_config', # '--add_to_filename', f"_{t_interval_start:%y%m%d_%H%M}_{length}", '--filename_fun', f'lambda tbl: "{pattern_path_new.name}"', '--add_custom_list', 'USEtime', # nAveragePrefer', '--add_custom_expressions_list', txt_time_range, # + """ # ", 5" # """, '--b_update_existed', 'True', '--export_pages_int_list', '1, 2', # 0 for all '6, 7, 8', #'1, 2, 3' # '--export_dpi_int', '200', '--export_format', 'emf', '--b_interact', '0', '--b_images_only', f'{b_images_only}', '--return', '<embedded_object>', # reuse to not bloat memory ], veusze=cfg_vp['veusze'])
def main(new_arg=None): """ 1. Obtains command line arguments (for description see my_argparser()) that can be passed from new_arg and ini.file also. 2. Loads device data of calibration in laboratory from cfg['in']['db_path'] 2. Calibrates configured by cfg['in']['channels'] channels ('accelerometer' and/or 'magnetometer'): soft iron 3. Wrong implementation - not use cfg['in']['timerange_nord']! todo: Rotate compass using cfg['in']['timerange_nord'] :param new_arg: returns cfg if new_arg=='<cfg_from_args>' but it will be None if argument argv[1:] == '-h' or '-v' passed to this code argv[1] is cfgFile. It was used with cfg files: :return: """ global l cfg = cfg_from_args(my_argparser(), new_arg) if not cfg: return if cfg['program']['return'] == '<cfg_from_args>': # to help testing return cfg l = init_logging(logging, None, cfg['program']['log'], cfg['program']['verbose']) l.info("%s(%s) channels: %s started. ", this_prog_basename(__file__), cfg['in']['tables'], cfg['in']['channels']) fig = None fig_filt = None channel = 'accelerometer' # 'magnetometer' fig_save_dir_path = cfg['in']['db_path'].parent with pd.HDFStore(cfg['in']['db_path'], mode='r') as store: if len(cfg['in']['tables']) == 1: cfg['in']['tables'] = h5find_tables(store, cfg['in']['tables'][0]) coefs = {} for itbl, tbl in enumerate(cfg['in']['tables'], start=1): probe_number = int(re.findall('\d+', tbl)[0]) l.info(f'{itbl}. {tbl}: ') if isinstance(cfg['in']['timerange'], Mapping): # individual interval for each table if probe_number in cfg['in']['timerange']: timerange = cfg['in']['timerange'][probe_number] else: timerange = None else: timerange = cfg['in'][ 'timerange'] # same interval for each table a = load_hdf5_data(store, table=tbl, t_intervals=timerange) # iUseTime = np.searchsorted(stime, [np.array(s, 'datetime64[s]') for s in np.array(strTimeUse)]) coefs[tbl] = {} for channel in cfg['in']['channels']: print(f' channel "{channel}"', end=' ') (col_str, coef_str) = channel_cols(channel) # filtering # col_str == 'A'? if True: b_ok = np.zeros(a.shape[0], bool) for component in ['x', 'y', 'z']: b_ok |= is_works( a[col_str + component], noise=cfg['filter']['no_works_noise'][channel]) l.info('Filtered not working area: %2.1f%%', (b_ok.size - b_ok.sum()) * 100 / b_ok.size) # vec3d = np.column_stack( # (a[col_str + 'x'], a[col_str + 'y'], a[col_str + 'z']))[:, b_ok].T # [slice(*iUseTime.flat)] vec3d = a.loc[ b_ok, [col_str + 'x', col_str + 'y', col_str + 'z']].to_numpy(float).T index = a.index[b_ok] vec3d, b_ok, fig_filt = filter_channes( vec3d, index, fig_filt, fig_save_prefix= f"{fig_save_dir_path / tbl}-'{channel}'", blocks=cfg['filter']['blocks'], offsets=cfg['filter']['offsets'], std_smooth_sigma=cfg['filter']['std_smooth_sigma']) A, b = calibrate(vec3d) window_title = f"{tbl} '{channel}' channel ellipse" fig = calibrate_plot(vec3d, A, b, fig, window_title=window_title) fig.savefig(fig_save_dir_path / (window_title + '.png'), dpi=300, bbox_inches="tight") A_str, b_str = coef2str(A, b) l.info( 'Calibration coefficients calculated: \nA = \n%s\nb = \n%s', A_str, b_str) coefs[tbl][channel] = {'A': A, 'b': b} # Zeroing Nord direction timerange_nord = cfg['in']['timerange_nord'] if isinstance(timerange_nord, Mapping): timerange_nord = timerange_nord.get(probe_number) if timerange_nord: coefs[tbl]['M']['azimuth_shift_deg'] = zeroing_azimuth( store, tbl, timerange_nord, calc_vel_flat_coef(coefs[tbl]), cfg['in']) else: l.info('no zeroing Nord') # Write coefs for cfg_output in (['in', 'out'] if cfg['out'].get('db_path') else ['in']): l.info(f"Write to {cfg[cfg_output]['db_path']}") for itbl, tbl in enumerate(cfg['in']['tables'], start=1): # i_search = re.search('\d*$', tbl) # for channel in cfg['in']['channels']: # (col_str, coef_str) = channel_cols(channel) # dict_matrices = {f'//coef//{coef_str}//A': coefs[tbl][channel]['A'], # f'//coef//{coef_str}//C': coefs[tbl][channel]['b'], # } # if channel == 'M': # if coefs[tbl]['M'].get('azimuth_shift_deg'): # dict_matrices[f'//coef//{coef_str}//azimuth_shift_deg'] = coefs[tbl]['M']['azimuth_shift_deg'] # # Coping probe number to coefficient to can manually check when copy manually # if i_search: # try: # dict_matrices['//coef//i'] = int(i_search.group(0)) # except Exception as e: # pass dict_matrices = dict_matrices_for_h5(coefs[tbl], tbl, cfg['in']['channels']) h5copy_coef(None, cfg[cfg_output]['db_path'], tbl, dict_matrices=dict_matrices)
def main(new_arg=None): """ :param new_arg: returns cfg if new_arg=='<cfg_from_args>' but it will be None if argument argv[1:] == '-h' or '-v' passed to this code argv[1] is cfgFile. It was used with cfg files: 'csv2h5_nav_supervisor.ini' 'csv2h5_IdrRedas.ini' 'csv2h5_Idronaut.ini' :return: """ global l cfg = cfg_from_args(my_argparser(), new_arg) if not cfg or not cfg['program'].get('return'): print('Can not initialise') return cfg elif cfg['program']['return'] == '<cfg_from_args>': # to help testing return cfg l = init_logging(logging, None, cfg['program']['log'], cfg['program']['verbose']) print('\n' + this_prog_basename(__file__), end=' started. ') try: cfg['in']['paths'], cfg['in']['nfiles'], cfg['in'][ 'path'] = init_file_names(**{ **cfg['in'], 'path': cfg['in']['db_path'] }, b_interact=cfg['program']['b_interact']) set_field_if_no( cfg['in'], 'tables_log', '{}/logFiles' ) # will be filled by each table from cfg['in']['tables'] cfg['in']['query'] = query_time_range(**cfg['in']) set_field_if_no(cfg['out'], 'db_path', cfg['in']['db_path']) # cfg['out'] = init_file_names(cfg['out'], , path_field='db_path') except Ex_nothing_done as e: print(e.message) return () # args = parser.parse_args() # args.verbose= args.verbose[0] # try: # cfg= ini2dict(args.cfgFile) # cfg['in']['cfgFile']= args.cfgFile # except IOError as e: # print('\n==> '.join([a for a in e.args if isinstance(a,str)])) #e.message # raise(e) # Open text log if 'log' in cfg['program'].keys(): dir_create_if_need(os_path.dirname(cfg['program']['log'])) flog = open(cfg['program']['log'], 'a+', encoding='cp1251') cfg['out']['log'] = OrderedDict({'fileName': None, 'fileChangeTime': None}) # Prepare saving to csv if 'file_names_add_fun' in cfg['out']: file_names_add = eval( compile(cfg['out']['file_names_add_fun'], '', 'eval')) else: file_names_add = lambda i: '.csv' # f'_{i}.csv' # Prepare data for output store and open it if cfg['out']['tables'] == ['None']: # will not write new data table and its log cfg['out']['tables'] = None # cfg['out']['tables_log'] = None # for _runs cfg will be redefined (this only None case that have sense?) h5init(cfg['in'], cfg['out']) # store, dfLogOld = h5temp_open(**cfg['out']) cfg_fileN = os_path.splitext(cfg['in']['cfgFile'])[0] out_tables_log = cfg['out'].get('tables_log') if cfg_fileN.endswith('_runs') or (bool(out_tables_log) and 'logRuns' in out_tables_log[0]): # Will calculate only after filter # todo: calculate derived parameters before were they are bad (or replace all of them if any bad?) func_before_cycle = lambda x: None func_before_filter = lambda df, log_row, cfg: df func_after_filter = lambda df, cfg: log_runs(df, cfg, cfg['out']['log'] ) # this table will be added: cfg['out']['tables_log'] = [cfg['out']['tables'][0] + '/logRuns'] cfg['out'][ 'b_log_ready'] = True # to not apdate time range in h5_append() # Settings to not affect main data table and switch off not compatible options: cfg['out']['tables'] = [] cfg['out'][ 'b_skip_if_up_to_date'] = False # todo: If False check it: need delete all previous result of CTD_calc() or set min_time > its last log time. True not implemented? cfg['program'][ 'b_log_display'] = False # can not display multiple rows log if 'b_save_images' in cfg['extract_runs']: cfg['extract_runs']['path_images'] = cfg['out'][ 'db_path'].with_name('_subproduct') dir_create_if_need(cfg['extract_runs']['path_images']) else: if 'brown' in cfg_fileN.lower(): func_before_cycle = load_coef if 'Lat' in cfg['in']: func_before_filter = lambda *args, **kwargs: add_ctd_params( process_brown(*args, **kwargs), kwargs['cfg']) else: func_before_filter = process_brown else: func_before_cycle = lambda x: None def ctd_coord_and_params(df: pd.DataFrame, log_row, cfg): coord_data_col_ensure(df, log_row) return add_ctd_params(df, cfg) func_before_filter = ctd_coord_and_params func_after_filter = lambda df, cfg: df # nothing after filter func_before_cycle(cfg) # prepare: usually assign data to cfg['for'] if cfg['out'].get('path_csv'): dir_create_if_need(cfg['out']['path_csv']) # Load data Main circle ######################################### # Open input store and cicle through input table log records qstr_trange_pattern = "index>=Timestamp('{}') & index<=Timestamp('{}')" iSt = 1 dfLogOld, cfg['out']['db'], cfg['out'][ 'b_skip_if_up_to_date'] = h5temp_open(**cfg['out']) b_out_db_is_different = cfg['out']['db'] is not None and cfg['out'][ 'db_path_temp'] != cfg['in']['db_path'] # Cycle for each table, for each row in log: # for path_csv in gen_names_and_log(cfg['out'], dfLogOld): with FakeContextIfOpen( lambda f: pd.HDFStore(f, mode='r'), cfg['in']['db_path'], None if b_out_db_is_different else cfg['out']['db'] ) as cfg['in']['db']: # not opens ['in']['db'] if already opened to write for tbl in cfg['in']['tables']: if False: # Show table info nodes = sorted( cfg['out']['db'].root.__members__) # , key=number_key print(nodes) print(tbl, end='. ') df_log = cfg['in']['db'].select(cfg['in']['tables_log'].format(tbl) or tbl, where=cfg['in']['query']) if True: # try: if 'log' in cfg['program'].keys(): nRows = df_log.rows.size flog.writelines(datetime.now().strftime( '\n\n%d.%m.%Y %H:%M:%S> processed ') + f'{nRows} row' + ('s:' if nRows > 1 else ':')) for ifile, r in enumerate(df_log.itertuples(), start=iSt): # name=None print('.', end='') sys_stdout.flush() path_raw = PurePath(r.fileName) cfg['out']['log'].update(fileName=path_raw.name, fileChangeTime=r.fileChangeTime) # save current state cfg['in']['file_stem'] = cfg['out']['log'][ 'fileName'] # for exmple to can extract date in subprogram cfg['in']['fileChangeTime'] = cfg['out']['log'][ 'fileChangeTime'] if cfg['in']['b_skip_if_up_to_date']: have_older_data, have_duplicates = h5del_obsolete( cfg['out'], cfg['out']['log'], dfLogOld) if have_older_data: continue if have_duplicates: cfg['out']['b_remove_duplicates'] = True print('{}. {}'.format(ifile, path_raw.name), end=': ') # Load data qstr = qstr_trange_pattern.format(r.Index, r.DateEnd) df_raw = cfg['in']['db'].select(tbl, qstr) cols = df_raw.columns.tolist() # cfg['in']['lat'] and ['lon'] may be need in add_ctd_params() if Lat not in df_raw if 'Lat_en' in df_log.columns and 'Lat' not in cols: cfg['in']['lat'] = np.nanmean((r.Lat_st, r.Lat_en)) cfg['in']['lon'] = np.nanmean((r.Lon_st, r.Lon_en)) df = func_before_filter(df_raw, log_row=r, cfg=cfg) if df.size: # size is zero means save only log but not data # filter, updates cfg['out']['log']['rows'] df, _ = set_filterGlobal_minmax( df, cfg['filter'], cfg['out']['log']) if 'rows' not in cfg['out']['log']: l.warning('no data!') continue elif isinstance(cfg['out']['log']['rows'], int): print('filtered out {rows_filtered}, remains {rows}'. format_map(cfg['out']['log'])) if cfg['out']['log']['rows']: print('.', end='') else: l.warning('no data!') continue df = func_after_filter(df, cfg=cfg) # Append to Store h5_append(cfg['out'], df, cfg['out']['log'], log_dt_from_utc=cfg['in']['dt_from_utc']) # Copy to csv if cfg['out'].get('path_csv'): fname = '{:%y%m%d_%H%M}-{:%d_%H%M}'.format( r.Index, r.DateEnd) + file_names_add(ifile) if not 'data_columns' in cfg['out']: cfg['out']['data_columns'] = slice(0, -1) # all cols df.to_csv( # [cfg['out']['data_columns']] cfg['out']['path_csv'] / fname, date_format=cfg['out']['text_date_format'], float_format='%5.6g', index_label='Time' ) # to_string, line_terminator='\r\n' # Log to screen (if not prohibited explicitly) if cfg['out']['log'].get('Date0') is not None and ( ('b_log_display' not in cfg['program']) or cfg['program']['b_log_display']): str_log = '{fileName}:\t{Date0:%d.%m.%Y %H:%M:%S}-' \ '{DateEnd:%d. %H:%M:%S%z}\t{rows}rows'.format_map( cfg['out']['log']) # \t{Lat}\t{Lon}\t{strOldVal}->\t{mag} l.info(str_log) else: str_log = str(cfg['out']['log'].get('rows', '0')) # Log to logfile if 'log' in cfg['program'].keys(): flog.writelines('\n' + str_log) if b_out_db_is_different: try: if cfg['out']['tables'] is not None: print('') if cfg['out']['b_remove_duplicates']: h5remove_duplicates(cfg['out'], cfg_table_keys=('tables', 'tables_log')) # Create full indexes. Must be done because of using ptprepack in h5move_tables() below l.debug('Create index') for tblName in (cfg['out']['tables'] + cfg['out']['tables_log']): try: cfg['out']['db'].create_table_index(tblName, columns=['index'], kind='full') except Exception as e: l.warning( ': table {}. Index not created - error'.format( tblName), '\n==> '.join( [s for s in e.args if isinstance(s, str)])) except Exception as e: l.exception('The end. There are error ') import traceback, code from sys import exc_info as sys_exc_info tb = sys_exc_info()[2] # type, value, traceback.print_exc() last_frame = lambda tb=tb: last_frame(tb.tb_next ) if tb.tb_next else tb frame = last_frame().tb_frame ns = dict(frame.f_globals) ns.update(frame.f_locals) code.interact(local=ns) finally: cfg['out']['db'].close() if cfg['program']['log']: flog.close() if cfg['out']['db'].is_open: print('Wait store is closing...') sleep(2) failed_storages = h5move_tables(cfg['out']) print('Finishing...' if failed_storages else 'Ok.', end=' ') h5index_sort( cfg['out'], out_storage_name=f"{cfg['out']['db_path'].stem}-resorted.h5", in_storages=failed_storages)
def main(new_arg=None): cfg = cfg_from_args(my_argparser(), new_arg) if not cfg or not cfg['program'].get('return'): print('Can not initialise') return cfg elif cfg['program']['return'] == '<cfg_from_args>': # to help testing return cfg l = init_logging(logging, None, cfg['program']['log'], cfg['program']['verbose']) print('\n' + this_prog_basename(__file__), end=' started. ') try: cfg['in']['paths'], cfg['in']['nfiles'], cfg['in'][ 'path'] = init_file_names(**cfg['in'], b_interact=cfg['program']['b_interact'], cfg_search_parent=cfg['out']) h5init(cfg['in'], cfg['out']) except Ex_nothing_done as e: print(e.message) exit() df_dummy = pd.DataFrame( np.full(1, np.NaN, dtype=np.dtype({ 'formats': ['float64', 'float64'], 'names': cfg['out']['tracks_cols'][1:] })), index=(pd.NaT, )) # used for insert separator lines if 'routes_cols' not in cfg['in']: cfg['in']['routes_cols'] = cfg['in']['waypoints_cols'] if 'routes_cols' not in cfg['out']: cfg['out']['routes_cols'] = cfg['out'][ 'waypoints_cols'] # cfg['in']['routes_cols'] # # Writing if True: # try: l.warning('processing ' + str(cfg['in']['nfiles']) + ' file' + 's:' if cfg['in']['nfiles'] > 1 else ':') cfg['out']['log'] = {} set_field_if_no(cfg['out'], 'table_prefix', PurePath(cfg['in']['path']).stem) cfg['out']['table_prefix'] = cfg['out']['table_prefix'].replace( '-', '') if len([t for t in cfg['out']['tables'] if len(t)]) > 1: cfg['out']['tables'] = \ [cfg['out']['table_prefix'] + '_' + s for s in cfg['out']['tables']] cfg['out']['tables_log'] = \ [cfg['out']['table_prefix'] + '_' + s for s in cfg['out']['tables_log']] tables = dict(zip(df_names, cfg['out']['tables'])) tables_log = dict(zip(df_names, cfg['out']['tables_log'])) # Can not save path to DB (useless?) so set for this max file name length: set_field_if_no(cfg['out'], 'logfield_fileName_len', 50) cfg['out']['index_level2_cols'] = cfg['in']['routes_cols'][0] # ############################################################### # ## Cumulate all data in cfg['out']['path_temp'] ################## ## Main circle ############################################################ for i1_file, path_gpx in h5_dispenser_and_names_gen( cfg['in'], cfg['out']): l.info('{}. {}: '.format(i1_file, path_gpx.name)) # Loading data dfs = gpxConvert(cfg, path_gpx) print('write', end=': ') sys_stdout.flush() for key, df in dfs.items(): if (not tables.get(key)) or df.empty: continue elif key == 'tracks': # Save last time to can filter next file cfg['in']['time_last'] = df.index[-1] sort_time = False if key in {'waypoints', 'routes'} else None # monkey patching if 'tracker' in tables[key]: # Also {} must be in tables[key]. todo: better key+'_fun_tracker' in cfg['out']? # Trackers processing trackers_numbers = { '0-3106432': '1', '0-2575092': '2', '0-3124620': '3', '0-3125300': '4', '0-3125411': '5', '0-3126104': '6' } tables_pattern = tables[key] tables_log_pattern = tables_log[key] df['comment'] = df['comment'].str.split(" @", n=1, expand=True)[0] # split data and save to multipe tables df_all = df.set_index(['comment', df.index]) for sn, n in trackers_numbers.items( ): # set(df_all.index.get_level_values(0)) try: df = df_all.loc[sn] except KeyError: continue # redefine saving parameters cfg['out']['table'] = tables_pattern.format( trackers_numbers[sn]) cfg['out']['table_log'] = tables_log_pattern.format( trackers_numbers[sn]) call_with_valid_kwargs(df_filter_and_save_to_h5, df**cfg, input=cfg['in'], sort_time=sort_time) else: cfg['out']['table'] = tables[key] cfg['out']['table_log'] = tables_log[key] call_with_valid_kwargs(df_filter_and_save_to_h5, df, **cfg, input=cfg['in'], sort_time=sort_time) # try: # if cfg['out']['b_remove_duplicates']: # for tbls in cfg['out']['tables_have_wrote']: # for tblName in tbls: # cfg['out']['db'][tblName].drop_duplicates(keep='last', inplace= True) # print('Create index', end=', ') # create_table_index calls create_table which docs sais "cannot index Time64Col() or ComplexCol" # so load it, index, then save # level2_index = None # df = cfg['out']['db'][tblName] # last commented # df.set_index([navp_all_index, level2_index]) # df.sort_index() # cfg['out']['db'][tblName].sort_index(inplace=True) # if df is not None: # resave # df_log = cfg['out']['db'][tblName] # cfg['out']['db'].remove(tbls[0]) # cfg['out']['db'][tbls[0]] = df # cfg['out']['db'][tbls[1]] = df_log try: pass except Exception as e: print('The end. There are error ', standard_error_info(e)) # import traceback, code # from sys import exc_info as sys_exc_info # # tb = sys_exc_info()[2] # type, value, # traceback.print_exc() # last_frame = lambda tb=tb: last_frame(tb.tb_next) if tb.tb_next else tb # frame = last_frame().tb_frame # ns = dict(frame.f_globals) # ns.update(frame.f_locals) # code.interact(local=ns) # finally: # cfg['out']['db'].close() # failed_storages= h5move_tables(cfg['out'], cfg['out']['tables_have_wrote']) try: failed_storages = h5move_tables(cfg['out'], tbl_names=cfg['out'].get( 'tables_have_wrote', set())) print('Finishing...' if failed_storages else 'Ok.', end=' ') # Sort if have any processed data that needs it (not the case for the routes and waypoints), else don't because ``ptprepack`` not closes hdf5 source if it not finds data if cfg['in'].get('time_last'): cfg['out']['b_remove_duplicates'] = True h5index_sort( cfg['out'], out_storage_name=f"{cfg['out']['db_path'].stem}-resorted.h5", in_storages=failed_storages, tables=cfg['out'].get('tables_have_wrote', set())) except Ex_nothing_done: print('ok')
def main(new_arg=None, veusze=None, **kwargs): """ Initialise configuration and runs or returns routines cfg: ['program']['log'], 'out' 'in' 'async' globals: load_vsz l :param new_arg: :param veusze: used to reuse veusz embedded object (thus to not leak memory) :return: """ global l, load_vsz cfg = cfg_from_args(my_argparser(), new_arg, **kwargs) if not cfg or not cfg['program'].get('return'): print('Can not initialise') return cfg elif cfg['program']['return'] == '<cfg_from_args>': # to help testing return cfg l = init_logging(logging, None, cfg['program']['log'], cfg['program']['verbose']) cfg['program']['log'] = l.root.handlers[ 0].baseFilename # sinchronize obtained absolute file name print('\n' + this_prog_basename(__file__), 'started', end=' ') __name__ = '__main__' # indicate to other functions that they are called from main if cfg['out'].get('paths'): if not cfg['out']['b_images_only']: raise NotImplementedError( 'Provided out in not "b_images_only" mode!') cfg['out']['nfiles'] = len(cfg['out']['paths']) cfg['out']['path'] = cfg['out']['paths'][0] print( end=f"\n- {cfg['out']['nfiles']} output files to export images...") pass else: if cfg['out']['b_images_only']: print( 'in images only mode. Output pattern: ') # todo Export path: ' else: print('. Output pattern and Data: ') try: # Using cfg['out'] to store pattern information if not Path(cfg['in']['pattern_path']).is_absolute(): cfg['in']['pattern_path'] = Path(cfg['in']['path']).with_name( str(cfg['in']['pattern_path'])) cfg['out']['path'] = cfg['in']['pattern_path'] cfg['out']['paths'], cfg['out']['nfiles'], cfg['out'][ 'path'] = init_file_names(**cfg['out'], b_interact=False) except Ex_nothing_done as e: if not cfg['out']['b_images_only']: l.warning( f'{e.message} - no pattern. Specify it or use "b_images_only" mode!' ) return # or raise FileNotFoundError? if (cfg['out']['b_images_only'] and cfg['out']['paths']): cfg['in']['paths'] = cfg['out']['paths'] # have all we need to export else: try: cfg['in']['paths'], cfg['in']['nfiles'], cfg['in'][ 'path'] = init_file_names(**cfg['in'], b_interact=cfg['program'] ['b_interact']) except Ex_nothing_done as e: print(e.message) return # or raise FileNotFoundError? except TypeError: # expected str, bytes or os.PathLike object, not NoneType # cfg['in']['path'] is None. May be it is not need cfg['in']['paths'] = [cfg['in']['pattern_path'] ] # dummy for compatibility cfg['in']['nfiles'] = 1 cfg['out']['export_dir'] = dir_from_cfg(cfg['out']['path'].parent, cfg['out']['export_dir']) if 'restore_config' in cfg['program']['before_next']: cfg['in_saved'] = cfg['in'].copy() # Next is commented because reloading is Ok: not need to Close() # if cfg['out']['b_images_only'] and not 'Close()' in cfg['program']['before_next']: # cfg['program']['before_next'].append( # 'Close()') # usually we need to load new file for export (not only modify previous file) if cfg['program']['export_timeout_s'] and export_images_timed: cfg['async'] = { 'loop': asyncio.get_event_loop(), 'export_timeout_s': cfg['program']['export_timeout_s'] } else: cfg['async'] = {'loop': None} load_vsz = load_vsz_closure(cfg['program']['veusz_path'], cfg['program']['load_timeout_s'], cfg['program']['b_execute_vsz']) cfg['load_vsz'] = load_vsz cfg['co'] = {} if cfg['in']['table_log'] and cfg['in']['path'].suffix == '.h5' and not ( cfg['out']['b_images_only'] and len(cfg['in']['paths']) > 1): # load data by ranges from table log rows cfg['in']['db_path'] = cfg['in']['path'] in_fulls = h5log_names_gen(cfg['in']) elif cfg['in']['tables']: # tables instead files in_fulls = ge_names_from_hdf5_paths(cfg) else: # switch to use found vsz as source if need only export images (even with database source) in_fulls = ge_names(cfg) cor_savings = co_savings(cfg) cor_savings.send(None) nfiles = 0 try: # if True: path_prev = os_getcwd() os_chdir(cfg['out']['path'].parent) if cfg['program']['return'] == '<corutines_in_cfg>': cfg['co']['savings'] = cor_savings cfg['co']['gen_veusz_and_logs'] = load_to_veusz(in_fulls, cfg) cfg['co']['send_data'] = co_send_data(load_to_veusz, cfg, cor_savings) return cfg # return with link to generator function elif cfg['in'].get('data_yield_prefix'): # Cycle with obtaining Veusz data cfgin_update = None while True: # for vsz_data, log in cor_send_data.send(cfgin_update): try: vsz_data, log = co_send_data.send(cfgin_update) nfiles += 1 except (GeneratorExit, StopIteration, Ex_nothing_done): break if 'f_custom_in_cycle' in cfg['program']: cfgin_update = cfg['program']['f_custom_in_cycle']( vsz_data, log) else: # Cycle without obtaining Veusz data (or implemented by user's cfg['program']['f_custom_in_cycle']) for veusze, log in load_to_veusz(in_fulls, cfg, veusze): file_name_r = Path(log['out_vsz_full']).relative_to( cfg['out']['path'].parent) if cfg['program'].get('f_custom_in_cycle'): cfgin_update = cfg['program']['f_custom_in_cycle'](veusze, log) veusze_commands(veusze, cfgin_update, file_name_r) cor_savings.send((veusze, log)) nfiles += 1 cor_savings.close() if cfg['program']['return'] != '<embedded_object>': veusze = None # to note that it is closed in cor_savings.close() print(f'{nfiles} processed. ok>') pass except Exception as e: l.exception('Not good') return # or raise FileNotFoundError? finally: if cfg['async']['loop']: cfg['async']['loop'].close() os_chdir(path_prev) if veusze and cfg['program']['return'] == '<end>': veusze.Close() veusze.WaitForClose() veusze = None elif cfg['program']['return'] == '<embedded_object>': cfg['veusze'] = veusze return cfg
def main(new_arg=None, **kwargs): global l if __package__ is None: from sys import path as sys_path from os import path as os_path sys_path.append( os_path.dirname(os_path.dirname(os_path.abspath(__file__)))) from utils2init import prep cfg = cfg_from_args(my_argparser(), new_arg, **kwargs) # Input files default_input_filemask = '*.xml' inD, namesFE, nFiles, outD, outF, outE, bWrite2dir, msgFile = prep( { 'path': cfg['in']['path'], 'out_path': cfg['out']['path'] }, default_input_filemask) l = init_logging(logging, None, cfg['program']['log'], cfg['program']['verbose']) l.warning('\n' + this_prog_basename(__file__) + ' started. ') l.warning(msgFile) # set_field_if_no(cfg['out'], 'dt_between_track_segments', 99999) gpx = parse_smses(cfg) try: f = open(cfg['in']['path'].with_suffix('.gpx'), 'w') bMissedCoordTo0 = 'b_missed_coord_to_zeros' in cfg['process'] and cfg[ 'process']['b_missed_coord_to_zeros'] if bMissedCoordTo0: for p in gpx.walk(only_points=True): if p.latitude is None or p.longitude is None: p.latitude = '0' # float('NaN') #0 p.longitude = '0' # float('NaN') #0 # if p_prev==p: # p.delete # p_prev= p # gpx.add_missing_data() #remove_empty() f.write(gpx.to_xml()) print('ok') except Ex_nothing_done as e: print(e.message) except Exception as e: msg_option = f'The end. There are error {standard_error_info(e)}' print(msg_option) try: err_msg = e.msg l.error(' '.join([err_msg, msg_option])) except AttributeError: l.error(msg_option) finally: f.close() try: # if not bWrite2dir: # fp_out.close() # l.handlers[0].flush() logging.shutdown() except: pass
def main(new_arg=None, **kwargs): """ :param new_arg: list of strings, command line arguments :kwargs: dicts for each section: to overwrite values in them (overwrites even high priority values, other values remains) Note: if new_arg=='<cfg_from_args>' returns cfg but it will be None if argument argv[1:] == '-h' or '-v' passed to this code argv[1] is cfgFile. It was used with cfg files: 'csv2h5_nav_supervisor.ini' 'csv2h5_IdrRedas.ini' 'csv2h5_Idronaut.ini' :return: """ global l cfg = cfg_from_args(my_argparser(), new_arg, **kwargs) if not cfg or not cfg['program'].get('return'): print('Can not initialise') return cfg elif cfg['program']['return'] == '<cfg_from_args>': # to help testing return cfg l = init_logging(logging, None, cfg['program']['log'], cfg['program']['verbose']) print('\n' + this_prog_basename(__file__), end=' started. ') try: cfg['in']['paths'], cfg['in']['nfiles'], cfg['in'][ 'path'] = init_file_names(**cfg['in'], b_interact=cfg['program']['b_interact']) except Ex_nothing_done as e: print(e.message) return () bOld_FF00FF = False # if 'TermGrunt' in sys.argv[1] FF00FF' in str(cfg['in']['path']): # 'TermGrunt.h5' ? args.path.endswith ('bin'): # bOld_FF00FF = True # cfg['in'].update({ # 'header': 'TERM', # 'dt_from_utc': timedelta(hours=-1), # 'fs': 1, 'b_time_fromtimestamp': True, # 'b_time_fromtimestamp_source': False}) # else: # 'Katran.h5' # cfg['in'].update({ # 'delimiter_hex': '000000E6', # 'header': 'P, Temp, Cond', # 'dt_from_utc': timedelta(hours=0), # 'fs': 10, 'b_time_fromtimestamp': False, # 'b_time_fromtimestamp_source': False}) set_field_if_no( cfg['in'], 'dtype', 'uint{:d}'.format(2**(3 + np.searchsorted( 2**np.array([3, 4, 5, 6, 7]) > np.array( 8 * (cfg['in']['data_word_len'] - 1)), 1)))) # Prepare cpecific format loading and writing set_field_if_no(cfg['in'], 'coltime', []) cfg['in'] = init_input_cols(cfg['in']) cfg['out']['names'] = np.array(cfg['in']['dtype'].names)[ \ cfg['in']['cols_loaded_save_b']] cfg['out']['formats'] = [ cfg['in']['dtype'].fields[n][0] for n in cfg['out']['names'] ] cfg['out']['dtype'] = np.dtype({ 'formats': cfg['out']['formats'], 'names': cfg['out']['names'] }) h5init(cfg['in'], cfg['out']) # cfg['Period'] = 1.0 / cfg['in']['fs'] # instead Second can use Milli / Micro / Nano: # cfg['pdPeriod'] = pd.to_timedelta(cfg['Period'], 's') # #pd.datetools.Second(cfg['Period'])\ # if 1 % cfg['in']['fs'] == 0 else\ # pd.datetools.Nano(cfg['Period'] * 1e9) # log table of loaded files. columns: Start time, file name, and its index in array off all loaded data: log_item = cfg['out']['log'] = { } # fields will have: 'fileName': None, 'fileChangeTime': None, 'rows': 0 strLog = '' # from collections import namedtuple # type_log_files = namedtuple('type_log_files', ['label','iStart']) # log.sort(axis=0, order='log_item['Date0']')#sort files by time dfLogOld, cfg['out']['db'], cfg['out'][ 'b_skip_if_up_to_date'] = h5temp_open(**cfg['out']) if 'log' in cfg['program'].keys(): f = open(PurePath(sys_argv[0]).parent / cfg['program']['log'], 'a', encoding='cp1251') f.writelines( datetime.now().strftime('\n\n%d.%m.%Y %H:%M:%S> processed ' + str(cfg['in']['nfiles']) + ' file' + 's:' if cfg['in']['nfiles'] > 1 else ':')) b_remove_duplicates = False # normally no duplicates but will if detect # Config specially for readBinFramed set_field_if_no(cfg['in'], 'b_byte_order_is_big_endian', True) set_field_if_no(cfg['in'], 'b_baklan', False) set_field_if_no(cfg['in'], 'b_time_fromtimestamp_source', False) cfg['out']['fs'] = cfg['in']['fs'] if True: ## Main circle ############################################################ for i1_file, path_in in h5_dispenser_and_names_gen( cfg['in'], cfg['out']): l.info('{}. {}: '.format(i1_file, path_in.name)) # Loading data if bOld_FF00FF: V = readFF00FF(path_in, cfg) iFrame = np.arange(len(V)) else: V, iFrame = readBinFramed(path_in, cfg['in']) if ('b_time_fromtimestamp' in cfg['in'] and cfg['in']['b_time_fromtimestamp']) or \ ('b_time_fromtimestamp_source' in cfg['in'] and cfg['in']['b_time_fromtimestamp_source']): path_in_rec = os_path.join( 'd:\\workData\\_source\\BalticSea\\151021_T1Grunt_Pregol\\_source\\not_corrected', os_path.basename(path_in)[:-3] + 'txt' ) if cfg['in']['b_time_fromtimestamp_source'] else path_in log_item['Date0'] = datetime.fromtimestamp( os_path.getmtime(path_in_rec)) # getctime is bad log_item['Date0'] -= iFrame[-1] * timedelta( seconds=1 / cfg['in']['fs'] ) # use for computer filestamp at end of recording else: log_item['Date0'] = datetime.strptime( path_in.stem, cfg['in']['filename2timestart_format']) log_item['Date0'] += cfg['in']['dt_from_utc'] tim = log_item['Date0'] + iFrame * timedelta( seconds=1 / cfg['in']['fs'] ) # tim = pd.date_range(log_item['Date0'], periods=np.size(V, 0), freq=cfg['pdPeriod']) df = pd.DataFrame( V.view(dtype=cfg['out']['dtype']), # np.uint16 columns=cfg['out']['names'], index=tim) # pd.DataFrame(V, columns=cfg['out']['names'], dtype=cfg['out']['formats'], index=tim) if df.empty: # log['rows']==0 print('No data => skip file') continue df, tim = set_filterGlobal_minmax(df, cfg_filter=cfg['filter'], log=log_item, dict_to_save_last_time=cfg['in']) if log_item['rows_filtered']: print('filtered out {}, remains {}'.format( log_item['rows_filtered'], log_item['rows'])) if not log_item['rows']: l.warning('no data! => skip file') continue elif log_item['rows']: print( '.', end='' ) # , divisions=d.divisions), divisions=pd.date_range(tim[0], tim[-1], freq='1D') else: l.warning('no data! => skip file') continue # Append to Store h5_append(cfg['out'], df.astype('int32'), log_item) if 'txt' in cfg['program'].keys(): # can be saved as text too np.savetxt(cfg['program']['txt'], V, delimiter='\t', newline='\n', header=cfg['in']['header'] + log_item['fileName'], fmt='%d', comments='') try: if b_remove_duplicates: for tblName in (cfg['out']['table'] + cfg['out']['tableLog_names']): cfg['out']['db'][tblName].drop_duplicates( keep='last', inplace=True) # subset='fileName',? if len(strLog): print('Create index', end=', ') for tblName in (cfg['out']['table'] + cfg['out']['tableLog_names']): cfg['out']['db'].create_table_index(tblName, columns=['index'], kind='full') else: print('done nothing') except Exception as e: l.exception('The end. There are error ') import traceback, code from sys import exc_info as sys_exc_info tb = sys_exc_info()[2] # type, value, traceback.print_exc() last_frame = lambda tb=tb: last_frame(tb.tb_next) if tb.tb_next else tb frame = last_frame().tb_frame ns = dict(frame.f_globals) ns.update(frame.f_locals) code.interact(local=ns) # sort index if have any processed data (needed because ``ptprepack`` not closses hdf5 source if it not finds data) if cfg['in'].get('time_last'): failed_storages = h5move_tables(cfg['out']) print('Ok.', end=' ') h5index_sort( cfg['out'], out_storage_name=f"{cfg['out']['db_path'].stem}-resorted.h5", in_storages=failed_storages)
def main(new_arg=None, **kwargs): """ :param new_arg: list of strings, command line arguments :kwargs: dicts of dictcts (for each ini section): specified values overwrites ini values """ # global l cfg = cfg_from_args(my_argparser(), new_arg, **kwargs) if not cfg['program']: return # usually error of unrecognized arguments displayed cfg['in']['db_coefs'] = Path(cfg['in']['db_coefs']) for path_field in ['db_coefs', 'path_cruise']: if not cfg['in'][path_field].is_absolute(): cfg['in'][path_field] = ( cfg['in']['cfgFile'].parent / cfg['in'][path_field] ).resolve().absolute() # cfg['in']['cfgFile'].parent / def constant_factory(val): def default_val(): return val return default_val for lim in ('min_date', 'max_date'): # convert keys to int because they must be comparable to probes_int_list (for command line arguments keys are allways strings, in yaml you can set string or int) _ = {int(k): v for k, v in cfg['filter'][lim].items()} cfg['filter'][lim] = defaultdict(constant_factory(_.get(0)), _) l = init_logging(logging, None, None, 'INFO') #l = init_logging(logging, None, cfg['program']['log'], cfg['program']['verbose']) if True: # False. Experimental speedup but takes memory from dask.cache import Cache cache = Cache(2e9) # Leverage two gigabytes of memory cache.register() # Turn cache on globally #if __debug__: # # because there was errors on debug when default scheduler used # cfg['program']['dask_scheduler'] = 'synchronous' if cfg['program']['dask_scheduler']: if cfg['program']['dask_scheduler'] == 'distributed': from dask.distributed import Client # cluster = dask.distributed.LocalCluster(n_workers=2, threads_per_worker=1, memory_limit="5.5Gb") client = Client(processes=False) # navigate to http://localhost:8787/status to see the diagnostic dashboard if you have Bokeh installed # processes=False: avoide inter-worker communication for computations releases the GIL (numpy, da.array) # without is error else: if cfg['program']['dask_scheduler'] == 'synchronous': l.warning('using "synchronous" scheduler for debugging') import dask dask.config.set(scheduler=cfg['program']['dask_scheduler']) # Run steps : st.start = cfg['program']['step_start'] st.end = cfg['program']['step_end'] st.go = True if not cfg['out'][ 'db_name']: # set name by 'path_cruise' name or parent if it has digits at start. priority for name is "*inclinometer*" for p in (lambda p: [p, p.parent])(cfg['in']['path_cruise']): m = re.match('(^[\d_]*).*', p.name) if m: break cfg['out']['db_name'] = f"{m.group(1).strip('_')}incl.h5" dir_incl = next((d for d in cfg['in']['path_cruise'].glob('*inclinometer*') if d.is_dir()), cfg['in']['path_cruise']) db_path = dir_incl / '_raw' / cfg['out']['db_name'] # --------------------------------------------------------------------------------------------- # def fs(probe, name): # if 'w' in name.lower(): # Baranov's wavegauge electronic # return 10 # 5 # return 5 # if probe < 20 or probe in [23, 29, 30, 32, 33]: # 30 [4, 11, 5, 12] + [1, 7, 13, 30] # return 5 # if probe in [21, 25, 26] + list(range(28, 35)): # return 8.2 # return 4.8 def datetime64_str(time_str: Optional[str] = None) -> np.ndarray: """ Reformat time_str to ISO 8601 or to 'NaT'. Used here for input in funcs that converts str to numpy.datetime64 :param time_str: May be 'NaT' :return: ndarray of strings (tested for 1 element only) formatted by numpy. """ return np.datetime_as_string(np.datetime64(time_str, 's')) probes = cfg['in']['probes'] or range( 1, 41) # sets default range, specify your values before line --- raw_root, probe_is_incl = re.subn('INCL_?', 'INKL_', cfg['in']['probes_prefix'].upper()) # some parameters that depends of probe type (indicated by probes_prefix) p_type = defaultdict( # baranov's format constant_factory({ 'correct_fun': partial(correct_txt, mod_file_name=mod_incl_name, sub_str_list=[ b'^\r?(?P<use>20\d{2}(\t\d{1,2}){5}(\t\d{5}){8}).*', b'^.+' ]), 'fs': 10, 'format': 'Baranov', }), { (lambda x: x if x.startswith('incl') else 'incl')(cfg['in']['probes_prefix']): { 'correct_fun': partial( correct_txt, mod_file_name=mod_incl_name, sub_str_list=[ b'^(?P<use>20\d{2}(,\d{1,2}){5}(,\-?\d{1,6}){6}(,\d{1,2}\.\d{2})(,\-?\d{1,3}\.\d{2})).*', b'^.+' ]), 'fs': 5, 'format': 'Kondrashov', }, 'voln': { 'correct_fun': partial( correct_txt, mod_file_name=mod_incl_name, sub_str_list=[ b'^(?P<use>20\d{2}(,\d{1,2}){5}(,\-?\d{1,8})(,\-?\d{1,2}\.\d{2}){2}).*', b'^.+' ]), 'fs': 5, #'tbl_prefix': 'w', 'format': 'Kondrashov', } }) if st(1, 'Save inclinometer or wavegage data from ASCII to HDF5'): # Note: Can not find additional not corrected files for same probe if already have any corrected in search path (move them out if need) i_proc_probe = 0 # counter of processed probes i_proc_file = 0 # counter of processed files # patten to identify only _probe_'s raw data files that need to correct '*INKL*{:0>2}*.[tT][xX][tT]': raw_parent = dir_incl / '_raw' # raw_parent /= if cfg['in']['raw_subdir'] is None: cfg['in']['raw_subdir'] = '' dir_out = raw_parent / re.sub(r'[.\\/ *?]', '_', cfg['in']['raw_subdir']) # sub replaces multilevel subdirs to 1 level that correct_fun() can only make def dt_from_utc_2000(probe): """ Correct time of probes started without time setting. Raw date must start from 2000-01-01T00:00""" return ( datetime(year=2000, month=1, day=1) - cfg['in']['time_start_utc'][probe] ) if cfg['in']['time_start_utc'].get(probe) else timedelta(0) # convert cfg['in']['dt_from_utc'] keys to int cfg['in']['dt_from_utc'] = { int(p): v for p, v in cfg['in']['dt_from_utc'].items() } # convert cfg['in']['t_start_utc'] to cfg['in']['dt_from_utc'] and keys to int cfg['in']['dt_from_utc'].update( # overwriting the 'time_start_utc' where already exist {int(p): dt_from_utc_2000(p) for p, v in cfg['in']['time_start_utc'].items()} ) # make cfg['in']['dt_from_utc'][0] be default value cfg['in']['dt_from_utc'] = defaultdict( constant_factory(cfg['in']['dt_from_utc'].pop(0, timedelta(0))), cfg['in']['dt_from_utc']) for probe in probes: raw_found = [] raw_pattern_file = str( Path(glob.escape(cfg['in']['raw_subdir'])) / cfg['in']['raw_pattern'].format(prefix=raw_root, number=probe)) correct_fun = p_type[cfg['in']['probes_prefix']]['correct_fun'] # if not archive: if (not re.match(r'.*(\.zip|\.rar)$', cfg['in']['raw_subdir'], re.IGNORECASE)) and raw_parent.is_dir(): raw_found = list(raw_parent.glob(raw_pattern_file)) if not raw_found: # Check if already have corrected files for probe generated by correct_txt(). If so then just use them raw_found = list( dir_out.glob( f"{cfg['in']['probes_prefix']}{probe:0>2}.txt")) if raw_found: print('corrected csv file', [r.name for r in raw_found], 'found') correct_fun = lambda x, dir_out: x elif not cfg['in']['raw_subdir']: continue for file_in in (raw_found or open_csv_or_archive_of_them( raw_parent, binary_mode=False, pattern=raw_pattern_file)): file_in = correct_fun(file_in, dir_out=dir_out) if not file_in: continue tbl = file_in.stem # f"{cfg['in']['probes_prefix']}{probe:0>2}" # tbl = re.sub('^((?P<i>inkl)|w)_0', lambda m: 'incl' if m.group('i') else 'w', # correct name # re.sub('^[\d_]*|\*', '', file_in.stem).lower()), # remove date-prefix if in name csv2h5( [ str( Path(__file__).parent / 'ini' / f"csv_{'inclin' if probe_is_incl else 'wavegage'}_{p_type[cfg['in']['probes_prefix']]['format']}.ini" ), '--path', str(file_in), '--blocksize_int', '50_000_000', # 50Mbt '--table', tbl, '--db_path', str(db_path), # '--log', str(scripts_path / 'log/csv2h5_inclin_Kondrashov.log'), # '--b_raise_on_err', '0', # ? '--b_interact', '0', '--fs_float', str(p_type[cfg['in']['probes_prefix']] ['fs']), #f'{fs(probe, file_in.stem)}', '--dt_from_utc_seconds', str(cfg['in']['dt_from_utc'][probe].total_seconds()), '--b_del_temp_db', '1', ] + (['--csv_specific_param_dict', 'invert_magnitometr: True'] if probe_is_incl else []), **{ 'filter': { 'min_date': cfg['filter']['min_date'].get( probe, np.datetime64(0, 'ns')), 'max_date': cfg['filter']['max_date'].get( probe, np.datetime64('now', 'ns') ), # simple 'now' works in sinchronious mode } }) # Get coefs: l.info( f"Adding coefficients to {db_path}/{tbl} from {cfg['in']['db_coefs']}" ) try: h5copy_coef(cfg['in']['db_coefs'], db_path, tbl) except KeyError as e: # Unable to open object (component not found) l.warning( 'No coefs to copy?' ) # write some dummy coefficients to can load Veusz patterns: h5copy_coef(None, db_path, tbl, dict_matrices=dict_matrices_for_h5(tbl=tbl)) except OSError as e: l.warning( 'Not found DB with coefs?' ) # write some dummy coefficients to can load Veusz patterns: h5copy_coef(None, db_path, tbl, dict_matrices=dict_matrices_for_h5(tbl=tbl)) i_proc_file += 1 else: print('no', raw_pattern_file, end=', ') i_proc_probe += 1 print('Ok:', i_proc_probe, 'probes,', i_proc_file, 'files processed.') if st(2, 'Calculate physical parameters and average'): kwarg = { 'in': { 'min_date': cfg['filter']['min_date'][0], 'max_date': cfg['filter']['max_date'][0], 'time_range_zeroing': cfg['in']['time_range_zeroing'] }, 'proc': {} } # if aggregate_period_s is None then not average and write to *_proc_noAvg.h5 else loading from that h5 and writing to _proc.h5 if not cfg['out']['aggregate_period_s']: cfg['out']['aggregate_period_s'] = [ None, 2, 600, 7200 if probe_is_incl else 3600 ] if cfg['in']['azimuth_add']: if 'Lat' in cfg['in']['azimuth_add']: # add magnetic declination,° for used coordinates # todo: get time kwarg['proc']['azimuth_add'] = mag_dec( cfg['in']['azimuth_add']['Lat'], cfg['in']['azimuth_add']['Lon'], datetime(2020, 9, 10), depth=-1) else: kwarg['proc']['azimuth_add'] = 0 if 'constant' in cfg['in']['azimuth_add']: # and add constant. For example, subtruct declination at the calibration place if it was applied kwarg['proc']['azimuth_add'] += cfg['in']['azimuth_add'][ 'constant'] # add -6.656 to account for calibration in Kaliningrad (mag deg = 6.656°) for aggregate_period_s in cfg['out']['aggregate_period_s']: if aggregate_period_s is None: db_path_in = db_path db_path_out = dir_incl / f'{db_path.stem}_proc_noAvg.h5' else: db_path_in = dir_incl / f'{db_path.stem}_proc_noAvg.h5' db_path_out = dir_incl / f'{db_path.stem}_proc.h5' # or separately: '_proc{aggregate_period_s}.h5' # 'incl.*|w\d*' inclinometers or wavegauges w\d\d # 'incl09': tables_list_regex = f"{cfg['in']['probes_prefix'].replace('voln', 'w')}.*" if cfg['in']['probes']: tables_list_regex += "(?:{})".format('|'.join( '{:0>2}'.format(p) for p in cfg['in']['probes'])) args = [ '../../empty.yml', # all settings are here, so to not print 'using default configuration' we use some existed empty file '--db_path', str(db_path_in), '--tables_list', tables_list_regex, '--aggregate_period', f'{aggregate_period_s}S' if aggregate_period_s else '', '--out.db_path', str(db_path_out), '--table', f'V_incl_bin{aggregate_period_s}' if aggregate_period_s else 'V_incl', '--verbose', 'INFO', #'DEBUG' get many numba messages '--b_del_temp_db', '1', # '--calc_version', 'polynom(force)', # depreshiated # '--chunksize', '20000', # '--not_joined_h5_path', f'{db_path.stem}_proc.h5', ] if aggregate_period_s is None: # proc. parameters (if we have saved proc. data then when aggregating we are not processing) # Note: for Baranov's prog 4096 is not suited: args += ([ '--max_dict', 'M[xyz]:4096', # '--time_range_zeroing_dict', "incl19: '2019-11-10T13:00:00', '2019-11-10T14:00:00'\n," # not works - use kwarg # '--time_range_zeroing_list', '2019-08-26T04:00:00, 2019-08-26T05:00:00' '--split_period', '1D' ] if probe_is_incl else [ '--bad_p_at_bursts_starts_peroiod', '1H', ]) # csv splitted by 1day (default for no avg) else csv is monolith if aggregate_period_s not in cfg['out'][ 'aggregate_period_s_not_to_text']: # , 300, 600]: args += ['--text_path', str(dir_incl / 'text_output')] # If need all data to be combined one after one: # set_field_if_no(kwarg, 'in', {}) # kwarg['in'].update({ # # 'tables': [f'incl{i:0>2}' for i in min_date.keys() if i!=0], # 'dates_min': min_date.values(), # in table list order # 'dates_max': max_date.values(), # # }) # set_field_if_no(kwarg, 'out', {}) # kwarg['out'].update({'b_all_to_one_col': 'True'}) incl_h5clc.main(args, **kwarg) if st(3, 'Calculate spectrograms'): # Can be done at any time after step 1 min_Pressure = 7 # add dict dates_min like {probe: parameter} of incl_clc to can specify param to each probe def raise_ni(): raise NotImplementedError( 'Can not proc probes having different fs in one run: you need to do it separately' ) args = [ Path(incl_h5clc.__file__).with_name( f'incl_h5spectrum{db_path.stem}.yaml'), # if no such file all settings are here '--db_path', str(dir_incl / f'{db_path.stem}_proc_noAvg.h5'), '--tables_list', f"{cfg['in']['probes_prefix']}.*", # inclinometers or wavegauges w\d\d ## 'w02', 'incl.*', # '--aggregate_period', f'{aggregate_period_s}S' if aggregate_period_s else '', '--min_date', datetime64_str(cfg['filter']['min_date'][0]), '--max_date', datetime64_str(cfg['filter']['max_date'] [0]), # '2019-09-09T16:31:00', #17:00:00 '--min_Pressure', f'{min_Pressure}', # '--max_dict', 'M[xyz]:4096', # use if db_path is not ends with _proc_noAvg.h5 i.e. need calc velocity '--out.db_path', f"{db_path.stem.replace('incl', cfg['in']['probes_prefix'])}_proc_psd.h5", # '--table', f'psd{aggregate_period_s}' if aggregate_period_s else 'psd', '--fs_float', str(p_type[cfg['in']['probes_prefix']] ['fs']), # f"{fs(probes[0], cfg['in']['probes_prefix'])}", # (lambda x: x == x[0])(np.vectorize(fs)(probes, prefix))).all() else raise_ni() # # '--time_range_zeroing_list', '2019-08-26T04:00:00, 2019-08-26T05:00:00' # '--verbose', 'DEBUG', # '--chunksize', '20000', '--b_interact', '0', ] if probe_is_incl: args += [ '--split_period', '2H', '--fmin', '0.0004', #0.0004 '--fmax', '1.05' ] else: args += [ '--split_period', '1H', '--dt_interval_minutes', '15', # set this if burst mode to the burst interval '--fmin', '0.0001', '--fmax', '4', #'--min_Pressure', '-1e15', # to not load NaNs ] incl_h5spectrum.main(args) if st(4, 'Draw in Veusz'): pattern_path = dir_incl / r'processed_h5,vsz/201202-210326incl_proc#28.vsz' # r'\201202_1445incl_proc#03_pattern.vsz' #' # db_path.parent / r'vsz_5min\191119_0000_5m_incl19.vsz' # r'vsz_5min\191126_0000_5m_w02.vsz' b_images_only = False # importing in vsz index slices replacing: pattern_str_slice_old = None # Length of not adjacent intervals, s (set None to not allow) # pandas interval in string or tuple representation '1D' of period between intervals and interval to draw period_str = '0s' # '1D' # dt dt_str = '0s' # '5m' file_intervals = None period = to_offset(period_str).delta dt = to_offset(dt_str).delta # timedelta(0) # 60 * 5 if file_intervals and period and dt: # Load starts and assign ends t_intervals_start = pd.read_csv( cfg['in']['path_cruise'] / r'vsz+h5_proc\intervals_selected.txt', converters={ 'time_start': lambda x: np.datetime64(x, 'ns') }, index_col=0).index edges = (pd.DatetimeIndex(t_intervals_start), pd.DatetimeIndex(t_intervals_start + dt_custom_s) ) # np.zeros_like() elif period and dt: # Generate periodic intervals t_interval_start, t_intervals_end = intervals_from_period( datetime_range=np.array( [ cfg['filter']['min_date']['0'], cfg['filter']['max_date']['0'] ], # ['2018-08-11T18:00:00', '2018-09-06T00:00:00'], # ['2019-02-11T13:05:00', '2019-03-07T11:30:00'], # ['2018-11-16T15:19', '2018-12-14T14:35'], # ['2018-10-22T12:30', '2018-10-27T06:30:00'], 'datetime64[s]'), period=period) edges = (pd.DatetimeIndex([t_interval_start ]).append(t_intervals_end[:-1]), pd.DatetimeIndex(t_intervals_end)) else: # [min, max] edges for each probe edges_dict = { pr: [cfg['filter']['min_date'][pr], cfg['filter']['max_date'][pr]] for pr in probes } cfg_vp = {'veusze': None} for i, probe in enumerate(probes): # cfg_vp = {'veusze': None} if edges_dict: # custom edges for each probe edges = [pd.DatetimeIndex([t]) for t in edges_dict[probe]] # substr in file to rerplace probe_name_in_pattern (see below). probe_name = f"_{cfg['in']['probes_prefix'].replace('incl', 'i')}{probe:02}" tbl = None # f"/{cfg['in']['probes_prefix']}{probe:02}" # to check probe data exist in db else will not check l.info('Draw %s in Veusz: %d intervals...', probe_name, edges[0].size) # for i_interval, (t_interval_start, t_interval_end) in enumerate(zip(pd.DatetimeIndex([t_interval_start]).append(t_intervals_end[:-1]), t_intervals_end), start=1): for i_interval, (t_interval_start, t_interval_end) in enumerate(zip(*edges), start=1): # if i_interval < 23: #<= 0: # TEMPORARY Skip this number of intervals # continue if period and period != dt: t_interval_start = t_interval_end - pd.Timedelta( dt_custom_s, 's') if tbl: try: # skipping absent probes start_end = h5q_interval2coord( db_path=str(db_path), table=tbl, t_interval=(t_interval_start, t_interval_end)) if not len(start_end): break # no data except KeyError: break # device name not in specified range, go to next name pattern_path_new = pattern_path.with_name(''.join([ f'{t_interval_start:%y%m%d_%H%M}', f'_{dt_str}' if dt else '', f'{probe_name}.vsz' ])) # Modify pattern file if not b_images_only: pattern_type, pattern_number = re.match( r'.*(incl|w)_proc?#?(\d*).*', pattern_path.name).groups() probe_name_in_pattern = f"_{pattern_type.replace('incl', 'i')}{pattern_number}" def f_replace(line): """ Replace in file 1. probe name 2. slice """ # if i_interval == 1: line, ok = re.subn(probe_name_in_pattern, probe_name, line) if ok and pattern_str_slice_old: # can be only in same line str_slice = '(({:d}, {:d}, None),)'.format( *(start_end + np.int32([-1, 1]))) # bytes(, 'ascii') line = re.sub(pattern_str_slice_old, str_slice, line) return line if not rep_in_file(pattern_path, pattern_path_new, f_replace=f_replace, binary_mode=False): l.warning('Veusz pattern not changed!' ) # may be ok if we need draw pattern # break elif cfg_vp['veusze']: cfg_vp['veusze'].Load(str(pattern_path_new)) elif cfg_vp['veusze']: cfg_vp['veusze'].Load(str(pattern_path_new)) txt_time_range = \ """ "[['{:%Y-%m-%dT%H:%M}', '{:%Y-%m-%dT%H:%M}']]" \ """.format(t_interval_start, t_interval_end) print(f'{i_interval}. {txt_time_range}', end=' ') cfg_vp = veuszPropagate.main( [ Path(veuszPropagate.__file__).parent.with_name( 'veuszPropagate.ini'), # '--data_yield_prefix', '-', # '--path', str(db_path), # if custom loading from db and some source is required '--tables_list', '', # switches to search vsz-files only # f'/{probe_name}', # 181022inclinometers/ \d* '--pattern_path', str(pattern_path_new), # fr'd:\workData\BalticSea\190801inclinometer_Schuka\{probe_name}_190807_1D.vsz', # str(dir_incl / f'{probe_name}_190211.vsz'), #warning: create file with small name # '--before_next', 'restore_config', # '--add_to_filename', f"_{t_interval_start:%y%m%d_%H%M}_{dt}", '--filename_fun', f'lambda tbl: "{pattern_path_new.name}"', '--add_custom_list', f'USEtime__', # f'USEtime{probe_name}', nAveragePrefer', '--add_custom_expressions_list', txt_time_range, # + """ # ", 5" # """, '--b_update_existed', 'True', '--export_pages_int_list', '0', # 0 for all '6, 7, 8', #'1, 2, 3' # '--export_dpi_int', '200', '--export_format', 'jpg', #'emf', '--b_interact', '0', '--b_images_only', f'{b_images_only}', '--return', '<embedded_object>', # reuse to not bloat memory '--b_execute_vsz', 'True', '--before_next', 'Close()' # Close() need if b_execute_vsz many files ], veusze=cfg_vp['veusze']) if st(40, f'Draw in Veusz by loader-drawer.vsz method'): # save all vsz files that uses separate code from os import chdir as os_chdir dt_s = 300 cfg['in'][ 'pattern_path'] = db_path.parent / f'vsz_{dt_s:d}s' / '~pattern~.vsz' time_starts = pd.read_csv( db_path.parent / r'processed_h5,vsz' / 'intervals_selected.txt', index_col=0, parse_dates=True, date_parser=lambda x: pd.to_datetime(x, format='%Y-%m-%dT%H:%M:%S' )).index pattern_code = cfg['in']['pattern_path'].read_bytes( ) # encoding='utf-8' path_vsz_all = [] for i, probe in enumerate(probes): probe_name = f"{cfg['in']['probes_prefix']}{probe:02}" # table name in db l.info('Draw %s in Veusz: %d intervals...', probe_name, time_starts.size) for i_interval, time_start in enumerate(time_starts, start=1): path_vsz = cfg['in']['pattern_path'].with_name( f"{time_start:%y%m%d_%H%M}_{probe_name.replace('incl','i')}.vsz" ) # copy file to path_vsz path_vsz.write_bytes(pattern_code) # replaces 1st row path_vsz_all.append(path_vsz) os_chdir(cfg['in']['pattern_path'].parent) veuszPropagate.main( [ 'ini/veuszPropagate.ini', '--path', str(cfg['in']['pattern_path'].with_name( '??????_????_*.vsz')), # db_path), '--pattern_path', f"{cfg['in']['pattern_path']}_", # here used to auto get export dir only. may not be _not existed file path_ if ['out']['paths'] is provided # '--table_log', f'/{device}/logRuns', # '--add_custom_list', f'{device_veusz_prefix}USE_time_search_runs', # 'i3_USE_timeRange', # '--add_custom_expressions', # """'[["{log_row[Index]:%Y-%m-%dT%H:%M:%S}", "{log_row[DateEnd]:%Y-%m-%dT%H:%M:%S}"]]'""", # '--export_pages_int_list', '1', #'--b_images_only', 'True' '--b_interact', '0', '--b_update_existed', 'True', # todo: delete_overlapped '--b_images_only', 'True', '--load_timeout_s_float', str(cfg['program']['load_timeout_s']) # '--min_time', '2020-07-08T03:35:00', ], **{'out': { 'paths': path_vsz_all }}) if st(50, 'Export from existed Veusz files in dir'): pattern_parent = db_path.parent # r'vsz_5min\191126_0000_5m_w02.vsz'' pattern_path = str(pattern_parent / r'processed_h5,vsz' / '??????incl_proc#[1-9][0-9].vsz') # [0-2,6-9] veuszPropagate.main([ 'ini/veuszPropagate.ini', '--path', pattern_path, '--pattern_path', pattern_path, # '--export_pages_int_list', '1', #'--b_images_only', 'True' '--b_interact', '0', '--b_update_existed', 'True', # todo: delete_overlapped '--b_images_only', 'True', '--load_timeout_s_float', str(cfg['program']['load_timeout_s']), '--b_execute_vsz', 'True', '--before_next', 'Close()' # Close() need if b_execute_vsz many files ])
def main(new_arg=None, veusze=None): """ Note: if vsz data source have 'Ag_old_inv' variable then not invert coef. Else invert to use in vsz which not invert coefs :param new_arg: :return: """ global l p = veuszPropagate.my_argparser() p_groups = { g.title: g for g in p._action_groups if g.title.split(' ')[-1] != 'arguments' } # skips special argparse groups p_groups['in'].add( '--channels_list', help= 'channels needed zero calibration: "magnetometer" or "M" for magnetometer and any else for accelerometer, use "M, A" for both, empty to skip ' ) p_groups['in'].add( '--widget', help= 'path to Veusz widget property which contains coefficients. For example "/fitV(force)/grid1/graph/fit1/values"' ) p_groups['in'].add( '--data_for_coef', default='max_incl_of_fit_t', help= 'Veusz data to use as coef. If used with widget then this data is appended to data from widget' ) p_groups['out'].add('--out.path', help='path to db where write coef') p_groups['out'].add( '--re_tbl_from_vsz_name', help= 'regex to extract hdf5 table name from to Veusz file name (last used "\D*\d*")' # ? why not simly specify table name? ) # todo: "b_update_existed" arg will be used here for exported images. Check whether False works or prevent open vsz cfg = cfg_from_args(p, new_arg) if not Path(cfg['program']['log']).is_absolute(): cfg['program']['log'] = str( Path(__file__).parent.joinpath( cfg['program']['log'])) # l.root.handlers[0].baseFilename if not cfg: return if new_arg == '<return_cfg>': # to help testing return cfg l = init_logging(logging, None, cfg['program']['log'], cfg['program']['verbose']) veuszPropagate.l = l print('\n' + this_prog_basename(__file__), 'started', end=' ') if cfg['out']['b_images_only']: print('in images only mode.') try: print('Output pattern ') # Using cfg['out'] to store pattern information if not Path(cfg['in']['pattern_path']).is_absolute(): cfg['in']['pattern_path'] = str(cfg['in']['path'].parent.joinpath( cfg['in']['pattern_path'])) set_field_if_no(cfg['out'], 'path', cfg['in']['pattern_path']) cfg['out']['paths'], cfg['out']['nfiles'], cfg['out'][ 'path'] = init_file_names(**cfg['out'], b_interact=cfg['program']['b_interact']) except Ex_nothing_done as e: print(e.message, ' - no pattern') return # or raise FileNotFoundError? try: print(end='Data ') cfg['in']['paths'], cfg['in']['nfiles'], cfg['in'][ 'path'] = init_file_names( **cfg['in'], b_interact=False) # do not bother user 2nd time except Ex_nothing_done as e: print(e.message) return # or raise FileNotFoundError? if not cfg['out']['export_dir']: cfg['out']['export_dir'] = Path(cfg['out']['path']).parent if cfg['program']['before_next'] and 'restore_config' in cfg['program'][ 'before_next']: cfg['in_saved'] = cfg['in'].copy() # cfg['loop'] = asyncio.get_event_loop() # cfg['export_timeout_s'] = 600 cfg['out']['export_dir'] = dir_from_cfg(cfg['out']['path'].parent, cfg['out']['export_dir']) veuszPropagate.load_vsz = veuszPropagate.load_vsz_closure( cfg['program']['veusz_path'], b_execute_vsz=cfg['program']['b_execute_vsz']) gen_veusz_and_logs = veuszPropagate.load_to_veusz( veuszPropagate.ge_names(cfg), cfg, veusze) names_get = ['Inclination_mean_use1', 'logVext1_m__s' ] # \, 'Inclination_mean_use2', 'logVext2_m__s' names_get_fits = ['fit'] # , 'fit2' vsz_data = {n: [] for n in names_get} for n in names_get_fits: vsz_data[n] = [] # prepare collecting all coef in text also names_get_txt_results = ['fit1result'] # , 'fit2result' txt_results = {n: {} for n in names_get_txt_results} i_file = 0 for veusze, log in gen_veusz_and_logs: if not veusze: continue i_file += 1 print(i_file) if cfg['out']['re_tbl_from_vsz_name']: table = cfg['out']['re_tbl_from_vsz_name'].match( log['out_name']).group() else: table = re.sub( '^[\d_]*', '', log['out_name']) # delete all first digits (date part) for n in names_get: vsz_data[n].append(veusze.GetData(n)[0]) for n in [cfg['in']['data_for_coef']]: vsz_data[n] = list(veusze.GetData(n)[0]) # Save velocity coefficients into //{table}//coef//Vabs{i} where i - fit number enumeretad from 0 for i, name_out in enumerate(names_get_fits): # ['fit1', 'fit2'] coef = veusze.Get( cfg['in']['widget'] ) # veusze.Root['fitV(inclination)']['grid1']['graph'][name_out].values.val if 'a' in coef: coef_list = [ coef[k] for k in ['d', 'c', 'b', 'a'] if k in coef ] else: coef_list = [ coef[k] for k in sorted(coef.keys(), key=digits_first) ] if cfg['in']['data_for_coef']: coef_list += vsz_data[cfg['in']['data_for_coef']] vsz_data[name_out].append(coef_list) h5copy_coef(None, cfg['out']['path'], table, dict_matrices={ f'//coef//Vabs{i}': coef_list, f'//coef//date': np.float64([ np.NaN, np.datetime64(datetime.now()).astype(np.int64) ]) }) # h5savecoef(cfg['out']['path'], path=f'//{table}//coef//Vabs{i}', coef=coef_list) txt_results[names_get_txt_results[i]][table] = str(coef) # Zeroing matrix - calculated in Veusz by rotation on old0pitch old0roll Rcor = veusze.GetData( 'Rcor' )[0] # zeroing angles tuned by "USEcalibr0V_..." in Veusz Custom definitions if len(cfg['in']['channels']): l.info( 'Applying zero calibration matrix of peach = {} and roll = {} degrees' .format(np.rad2deg(veusze.GetData('old0pitch')[0][0]), np.rad2deg(veusze.GetData('old0roll')[0][0]))) with h5py.File(cfg['out']['path'], 'a') as h5: for channel in cfg['in']['channels']: (col_str, coef_str) = channel_cols(channel) # h5savecoef(cfg['out']['path'], path=f'//{table}//coef//Vabs{i}', coef=coef_list), dict_matrices={'//coef//' + coef_str + '//A': coefs[tbl][channel]['A'], '//coef//' + coef_str + '//C': coefs[tbl][channel]['b']}) # Currently used inclinometers have electronics rotated on 180deg. Before we inserted additional # rotation operation in Veusz by inverting A_old. Now we want iclude this information in database coef only. try: # Checking that A_old_inv exist A_old_inv = veusze.GetData('Ag_old_inv') is_old_used = True # Rcor is not account for electronic is rotated. except KeyError: is_old_used = False # Rcor is account for rotated electronic. if is_old_used: # The rotation is done in vsz (A_old in vsz is inverted) so need rotate it back to # use in vsz without such invertion # Rotate on 180 deg (note: this is not inversion) A_old_inv = h5[f'//{table}//coef//{coef_str}//A'][...] A_old = np.dot(A_old_inv, [[1, 0, 0], [0, -1, 0], [0, 0, -1] ]) # adds 180 deg to roll else: A_old = h5[f'//{table}//coef//{coef_str}//A'][...] # A_old now accounts for rotated electronic A = np.dot(Rcor, A_old) h5copy_coef(None, h5, table, dict_matrices={f'//coef//{coef_str}//A': A}) # veusze.Root['fitV(inclination)']['grid1']['graph2'][name_out].function.val print(vsz_data) veuszPropagate.export_images( veusze, cfg['out'], f"_{log['out_name']}", b_skip_if_exists=not cfg['out']['b_update_existed']) # vsz_data = veusz_data(veusze, cfg['in']['data_yield_prefix']) # # caller do some processing of data and gives new cfg: # cfgin_update = yield(vsz_data, log) # to test run veusze.Save('-.vsz') # cfg['in'].update(cfgin_update) # only update of cfg.in.add_custom_expressions is tested # if cfg['in']['add_custom']: # for n, e in zip(cfg['in']['add_custom'], cfg['in']['add_custom_expressions']): # veusze.AddCustom('definition', n, e, mode='replace') # #cor_savings.send((veusze, log)) # # # # # veusze.Save(str(path_vsz_save), mode='hdf5') # veusze.Save(str(path_vsz_save)) saves time with bad resolution print(f'Ok') print(txt_results) for n in names_get: pd.DataFrame.from_dict( dict(zip(list(txt_results['fit1result'].keys()), vsz_data[n]))).to_csv( Path(cfg['out']['path']).with_name( f'average_for_fitting-{n}.txt'), sep='\t', header=txt_results['fit1result'].keys, mode='a') return {**vsz_data, 'veusze': veusze}
def main(new_arg=None, **kwargs): """ Accumulats results of differen source tables in 2D netcdf matrices of each result parameter. :param new_arg: :return: Spectrum parameters used (taken from nitime/algorithems/spectral.py): NW : float, by default set to 4: that corresponds to bandwidth of 4 times the fundamental frequency The normalized half-bandwidth of the data tapers, indicating a multiple of the fundamental frequency of the DFT (Fs/N). Common choices are n/2, for n >= 4. This parameter is unitless and more MATLAB compatible. As an alternative, set the BW parameter in Hz. See Notes on bandwidth. BW : float The sampling-relative bandwidth of the data tapers, in Hz. adaptive : {True/False} Use an adaptive weighting routine to combine the PSD estimates of different tapers. low_bias : {True/False} Rather than use 2NW tapers, only use the tapers that have better than 90% spectral concentration within the bandwidth (still using a maximum of 2NW tapers) Notes ----- The bandwidth of the windowing function will determine the number tapers to use. This parameters represents trade-off between frequency resolution (lower main lobe BW for the taper) and variance reduction (higher BW and number of averaged estimates). Typically, the number of tapers is calculated as 2x the bandwidth-to-fundamental-frequency ratio, as these eigenfunctions have the best energy concentration. Result file is nc format that is Veusz compatible hdf5 format. If file exists it will be overwited todo: best may be is use DBMT: Dynamic Bayesian Multitaper (matlab code downloaded from git) """ global l cfg = cfg_from_args(my_argparser(), new_arg) if not cfg or not cfg['program'].get('return'): print('Can not initialise') return cfg elif cfg['program']['return'] == '<cfg_from_args>': # to help testing return cfg init_logging(logging, None, cfg['program']['log'], cfg['program']['verbose']) l = logging.getLogger(prog) multitaper.warn = l.warning # module is not installed but copied. so it can not import this dependace try: cfg['in']['paths'], cfg['in']['nfiles'], cfg['in'][ 'path'] = init_file_names(**{ **cfg['in'], 'path': cfg['in']['db_path'] }, b_interact=cfg['program']['b_interact']) except Ex_nothing_done as e: print(e.message) return () print('\n' + prog, end=' started. ') cfg['in']['columns'] = ['Ve', 'Vn', 'Pressure'] # minimum time between blocks, required in filt_data_dd() for data quality control messages: cfg['in'][ 'dt_between_bursts'] = None # If None report any interval bigger then min(1st, 2nd) cfg['in']['dt_hole_warning'] = np.timedelta64(2, 's') cfg_out = cfg['out'] if 'split_period' in cfg['out']: cfg['proc']['dt_interval'] = np.timedelta64( cfg['proc']['dt_interval'] if cfg['proc']['dt_interval'] else pd_period_to_timedelta(cfg['out']['split_period'])) if (not cfg['proc']['overlap']) and \ (cfg['proc']['dt_interval'] == np.timedelta64(pd_period_to_timedelta(cfg['out']['split_period']))): cfg['proc']['overlap'] = 0.5 else: cfg['proc']['dt_interval'] = np.timedelta64(cfg['proc']['dt_interval']) # cfg['proc']['dt_interval'] = np.timedelta64('5', 'm') * 24 cfg['proc']['time_intervals_start'] = np.array( cfg['proc']['time_intervals_center'], np.datetime64) - cfg['proc']['dt_interval'] / 2 cfg_out['chunksize'] = cfg['in']['chunksize'] h5init(cfg['in'], cfg_out) # cfg_out_table = cfg_out['table'] need? save because will need to change cfg_out['save_proc_tables'] = True # False # cfg['proc'] = {} prm = cfg['proc'] prm['adaptive'] = True # pmtm spectrum param prm['fs'] = cfg['in']['fs'] prm['bandwidth'] = 8 / cfg['proc']['dt_interval'].astype( 'timedelta64[s]').astype( 'float' ) # 8 * 2 * prm['fs']/34000 # 4 * 2 * 5/34000 ~= 4 * 2 * fs / N prm['low_bias'] = True nc_root = netCDF4.Dataset( Path(cfg_out['db_path']).with_suffix('.nc'), 'w', format='NETCDF4' ) # (for some types may need 'NETCDF4_CLASSIC' to use CLASSIC format for Views compability) nc_psd = nc_root.createGroup(cfg_out['table']) nc_psd.createDimension('time', None) nc_psd.createDimension('value', 1) nc_psd.createVariable('time_good_min', 'f8', ('value', )) nc_psd.createVariable('time_good_max', 'f8', ('value', )) nc_psd.createVariable('time_interval', 'f4', ('value', )) if cfg['out'].get('split_period'): # nv_time_interval = nc_psd.createVariable('time_interval', 'f8', ('time',), zlib=False) nc_psd.variables['time_interval'][:] = pd_period_to_timedelta( cfg['out']['split_period']).delta else: nc_psd.variables['time_interval'][:] = cfg['proc']['dt_interval'] # Dataframe of accumulating results: adding result columns in cycle with appending source table name to column names dfs_all = None # Initialasing variables to search data time range of calculated time_good_min = pd.Timestamp.max time_good_max = pd.Timestamp.min prm['length'] = None nv_vars_for_tbl = {} tbl_prev = '' itbl = 0 for df, tbl_in, dataname in h5_velocity_by_intervals_gen(cfg, cfg_out): tbl = tbl_in.replace('incl', '_i') # _, (df, tbl, dataname) in h5_dispenser_and_names_gen(cfg['in'], cfg_out, fun_gen=h5_velocity_by_intervals_gen): # interpolate to regular grid df = df.resample(timedelta(seconds=1 / prm['fs'])).interpolate() len_data_cur = df.shape[0] if tbl_prev != tbl: itbl += 1 l.info('%s: len=%s', dataname, len_data_cur) l.info(' %s. Writing to "%s"', itbl, tbl) # Prepare if prm['length'] is None: # 1st time prm['length'] = len_data_cur prm.update( psd_mt_params(**prm, dt=float(np.median(np.diff(df.index.values))) / 1e9)) nc_psd.createDimension('freq', len(prm['freqs'])) # nv_... - variables to be used as ``NetCDF variables`` nv_freq = nc_psd.createVariable('freq', 'f4', ('freq', ), zlib=True) nv_freq[:] = prm['freqs'] check_fs = 1e9 / np.median(np.diff(df.index.values)).item() if prm.get('fs'): np.testing.assert_almost_equal(prm['fs'], check_fs, decimal=7, err_msg='', verbose=True) else: prm['fs'] = check_fs elif prm['length'] != len_data_cur: prm['length'] = len_data_cur try: prm['dpss'], prm['eigvals'], prm['adaptive_if_can'] = \ multitaper._compute_mt_params(prm['length'], prm['fs'], prm['bandwidth'], prm['low_bias'], prm['adaptive']) except (ModuleNotFoundError, ValueError) as e: # l.error() already reported as multitaper.warn is reassignred to l.warning() prm['eigvals'] = np.int32([0]) prm['weights'] = np.sqrt(prm['eigvals'])[np.newaxis, :, np.newaxis] # l.warning('new length (%s) is different to last (%s)', len_data_cur, prm['length']) if tbl not in nc_psd.groups: nc_tbl = nc_psd.createGroup(tbl) cols = set() if 'Pressure' in df.columns: cols.add('Pressure') nc_tbl.createVariable('Pressure', 'f4', ( 'time', 'freq', ), zlib=True) if 'Ve' in df.columns: cols.update(['Ve', 'Vn']) nc_tbl.createVariable('Ve', 'f4', ( 'time', 'freq', ), zlib=True) nc_tbl.createVariable('Vn', 'f4', ( 'time', 'freq', ), zlib=True) nc_tbl.createVariable('time_start', 'f8', ('time', ), zlib=True) nc_tbl.createVariable('time_end', 'f8', ('time', ), zlib=True) out_row = 0 nc_tbl.variables['time_start'][out_row], nc_tbl.variables['time_end'][ out_row] = df.index[[0, -1]].values # Calculate PSD if prm['eigvals'].any(): for var_name in cols: nc_tbl.variables[var_name][ out_row, :] = call_with_valid_kwargs( psd_mt, df[var_name], **prm)[0, :] if time_good_min.to_numpy('<M8[ns]') > df.index[0].to_numpy( '<M8[ns]' ): # to_numpy() get values to avoid tz-naive/aware comparing restrictions time_good_min = df.index[0] if time_good_max.to_numpy('<M8[ns]') < df.index[-1].to_numpy( '<M8[ns]'): time_good_max = df.index[-1] else: for var_name in cols: nc_tbl.variables[var_name][out_row, :] = np.NaN out_row += 1 # if cfg_out['save_proc_tables']: # # ds_psd.to_netcdf('d:\\WorkData\\BlackSea\\190210\\190210incl_proc-psd_test.nc', format='NETCDF4_CLASSIC') # #f.to_hdf('d:\\WorkData\\BlackSea\\190210\\190210incl_proc-psd_test.h5', 'psd', format='fixed') # # tables_have_write.append(tbl) # try: # h5_append_to(df_psd, tbl, cfg_out, msg='save (temporary)', print_ok=None) # except HDF5ExtError: # cfg_out['save_proc_tables'] = False # l.warning('too very many colums for "table" format but "fixed" is not updateble so store result in memory 1st') # # # # df_cur = df_psd[['PSD_Vn', 'PSD_Ve']].rename( # columns={'PSD_Ve': 'PSD_Ve' + tbl[-2:], 'PSD_Vn': 'PSD_Vn' + tbl[-2:]}).compute() # if dfs_all is None: # dfs_all = df_cur # else: # dfs_all = dfs_all.join(df_cur, how='outer') # , rsuffix=tbl[-2:] join not works on dask # if itbl == len(cfg['in']['tables']): # after last cycle. Need incide because of actions when exit generator # h5_append_to(dfs_all, cfg_out_table, cfg_out, msg='save accumulated data', print_ok='Ok.') # nv_time_start_query = nc_psd.createVariable('time_start_query', 'f8', ('time',), zlib=True) # nv_time_start_query[:] = cfg['in']['time_intervals_start'].to_numpy(dtype="datetime64[ns]") \ # if isinstance(cfg['in']['time_intervals_start'], pd.DatetimeIndex) else cfg['in']['time_intervals_start'] nc_psd.variables['time_good_min'][:] = np.array(time_good_min.value, 'M8[ns]') nc_psd.variables['time_good_max'][:] = np.array(time_good_max.value, 'M8[ns]') # failed_storages = h5move_tables(cfg_out) print('Ok.', end=' ') nc_root.close()