示例#1
0
def main(train_file,
         valid_file,
         test_file,
         target_dir,
         embedding_size=512,
         hidden_size=512,
         dropout=0.5,
         num_classes=3,
         epochs=64,
         batch_size=32,
         lr=0.0004,
         patience=5,
         max_grad_norm=10.0,
         checkpoint=None):
    """
    Train the ESIM model on the Quora dataset.

    Args:
        train_file: A path to some preprocessed data that must be used
            to train the model.
        valid_file: A path to some preprocessed data that must be used
            to validate the model.
        embeddings_file: A path to some preprocessed word embeddings that
            must be used to initialise the model.
        target_dir: The path to a directory where the trained model must
            be saved.
        hidden_size: The size of the hidden layers in the model. Defaults
            to 300.
        dropout: The dropout rate to use in the model. Defaults to 0.5.
        num_classes: The number of classes in the output of the model.
            Defaults to 3.
        epochs: The maximum number of epochs for training. Defaults to 64.
        batch_size: The size of the batches for training. Defaults to 32.
        lr: The learning rate for the optimizer. Defaults to 0.0004.
        patience: The patience to use for early stopping. Defaults to 5.
        checkpoint: A checkpoint from which to continue training. If None,
            training starts from scratch. Defaults to None.
    """
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    print(20 * "=", " Preparing for training ", 20 * "=")

    if not os.path.exists(target_dir):
        os.makedirs(target_dir)

    print("\t* Loading validation data...")
    with open(valid_file, "rb") as pkl:
        valid_data = pickle.load(pkl)
        valid_dataloader = transform_batch_data(valid_data, batch_size=batch_size, shuffle=False)

    print("\t* Loading test data...")
    with open(test_file, "rb") as pkl:
        test_data = pickle.load(pkl)
        test_dataloader = transform_batch_data(test_data, batch_size=batch_size, shuffle=False)

    # -------------------- Model definition ------------------- #
    print("\t* Building model...")

    model = ESIM(embedding_size,
                 hidden_size,
                 dropout=dropout,
                 num_classes=num_classes,
                 device=device).to(device)

    # -------------------- Preparation for training  ------------------- #
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           mode="max",
                                                           factor=0.5,
                                                           patience=0)

    best_score = 0.0
    start_epoch = 1

    # Data for loss curves plot.
    epochs_count = []
    train_losses = []
    valid_losses = []

    # Continuing training from a checkpoint if one was given as argument.
    if checkpoint:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint["epoch"] + 1
        best_score = checkpoint["best_score"]

        print("\t* Training will continue on existing model from epoch {}..."
              .format(start_epoch))

        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        epochs_count = checkpoint["epochs_count"]
        train_losses = checkpoint["train_losses"]
        valid_losses = checkpoint["valid_losses"]

    # Compute loss and accuracy before starting (or resuming) training.
    _, valid_loss, valid_accuracy = validate(model,
                                             valid_dataloader,
                                             criterion)
    print("\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%"
          .format(valid_loss, (valid_accuracy*100)))

    _, test_loss, test_accuracy = validate(model,
                                             test_dataloader,
                                             criterion)
    print("\t* test loss before training: {:.4f}, accuracy: {:.4f}%"
          .format(test_loss, (test_accuracy*100)))
示例#2
0
def main(train_file,
         valid_matched_file,
         valid_mismatched_file,
         target_dir,
         embedding_size=512,
         hidden_size=512,
         dropout=0.5,
         num_classes=3,
         epochs=64,
         batch_size=32,
         lr=0.0004,
         patience=5,
         max_grad_norm=10.0,
         checkpoint=None):
    """
    Train the ESIM model on the Quora dataset.

    Args:
        train_file: A path to some preprocessed data that must be used
            to train the model.
        valid_file: A path to some preprocessed data that must be used
            to validate the model.
        embeddings_file: A path to some preprocessed word embeddings that
            must be used to initialise the model.
        target_dir: The path to a directory where the trained model must
            be saved.
        hidden_size: The size of the hidden layers in the model. Defaults
            to 300.
        dropout: The dropout rate to use in the model. Defaults to 0.5.
        num_classes: The number of classes in the output of the model.
            Defaults to 3.
        epochs: The maximum number of epochs for training. Defaults to 64.
        batch_size: The size of the batches for training. Defaults to 32.
        lr: The learning rate for the optimizer. Defaults to 0.0004.
        patience: The patience to use for early stopping. Defaults to 5.
        checkpoint: A checkpoint from which to continue training. If None,
            training starts from scratch. Defaults to None.
    """
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    print(20 * "=", " Preparing for training ", 20 * "=")

    if not os.path.exists(target_dir):
        os.makedirs(target_dir)

    # -------------------- Data loading ------------------- #
    print("\t* Loading training data...")
    with open(train_file, "rb") as pkl:
        train_data = pickle.load(pkl)

    print("\t* Loading validation data...")
    with open(valid_matched_file, "rb") as pkl:
        valid_matched_data = pickle.load(pkl)
        valid_matched_dataloader = transform_batch_data(valid_matched_data,
                                                        batch_size=batch_size,
                                                        shuffle=False)

    print("\t* Loading test data...")
    with open(valid_mismatched_file, "rb") as pkl:
        valid_mismatched_data = pickle.load(pkl)
        valid_mismatched_dataloader = transform_batch_data(
            valid_mismatched_data, batch_size=batch_size, shuffle=False)

    # -------------------- Model definition ------------------- #
    print("\t* Building model...")

    model = ESIM(embedding_size,
                 hidden_size,
                 dropout=dropout,
                 num_classes=num_classes,
                 device=device).to(device)

    # -------------------- Preparation for training  ------------------- #
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           mode="max",
                                                           factor=0.5,
                                                           patience=0)

    best_score = 0.0
    start_epoch = 1

    # Data for loss curves plot.
    epochs_count = []
    train_losses = []
    valid_losses = []

    # Continuing training from a checkpoint if one was given as argument.
    if checkpoint:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint["epoch"] + 1
        best_score = checkpoint["best_score"]

        print("\t* Training will continue on existing model from epoch {}...".
              format(start_epoch))

        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        epochs_count = checkpoint["epochs_count"]
        train_losses = checkpoint["train_losses"]
        valid_losses = checkpoint["valid_losses"]

    # Compute loss and accuracy before starting (or resuming) training.
    _, valid_loss, valid_accuracy = validate(model, valid_matched_dataloader,
                                             criterion)
    print(
        "\t* Matched Validation loss before training: {:.4f}, accuracy: {:.4f}%"
        .format(valid_loss, (valid_accuracy * 100)))

    _, valid_loss, valid_accuracy = validate(model,
                                             valid_mismatched_dataloader,
                                             criterion)
    print(
        "\t* Mismatched Validation loss before training: {:.4f}, accuracy: {:.4f}%"
        .format(valid_loss, (valid_accuracy * 100)))

    # -------------------- Training epochs ------------------- #
    print("\n", 20 * "=", "Training ESIM model on device: {}".format(device),
          20 * "=")

    patience_counter = 0
    for epoch in range(start_epoch, epochs + 1):
        train_dataloader = transform_batch_data(train_data,
                                                batch_size=batch_size,
                                                shuffle=True)

        epochs_count.append(epoch)

        print("* Training epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = train(model, train_dataloader,
                                                       optimizer, criterion,
                                                       epoch, max_grad_norm)

        train_losses.append(epoch_loss)
        print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))

        print("* Validation for epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = validate(
            model, valid_matched_dataloader, criterion)

        valid_losses.append(epoch_loss)
        print(
            "-> Matched Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n"
            .format(epoch_time, epoch_loss, (epoch_accuracy * 100)))

        epoch_time, epoch_loss, epoch_accuracy = validate(
            model, valid_mismatched_dataloader, criterion)
        print(
            "-> Mismatched Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n"
            .format(epoch_time, epoch_loss, (epoch_accuracy * 100)))

        sys.stdout.flush()  #刷新输出
        # Update the optimizer's learning rate with the scheduler.
        scheduler.step(epoch_accuracy)

        # Early stopping on validation accuracy.
        if epoch_accuracy < best_score:
            patience_counter += 1
        else:
            best_score = epoch_accuracy
            patience_counter = 0
            # Save the best model. The optimizer is not saved to avoid having
            # a checkpoint file that is too heavy to be shared. To resume
            # training from the best model, use the 'esim_*.pth.tar'
            # checkpoints instead.
            torch.save(
                {
                    "epoch": epoch,
                    "model": model.state_dict(),
                    "best_score": best_score,
                    "epochs_count": epochs_count,
                    "train_losses": train_losses,
                    "valid_losses": valid_losses
                }, os.path.join(target_dir, "best.pth.tar"))

        # Save the model at each epoch.
        torch.save(
            {
                "epoch": epoch,
                "model": model.state_dict(),
                "best_score": best_score,
                "optimizer": optimizer.state_dict(),
                "epochs_count": epochs_count,
                "train_losses": train_losses,
                "valid_losses": valid_losses
            }, os.path.join(target_dir, "esim_{}.pth.tar".format(epoch)))

        if patience_counter >= patience:
            print("-> Early stopping: patience limit reached, stopping...")
            break

    # Plotting of the loss curves for the train and validation sets.
    fig = plt.figure()
    plt.plot(epochs_count, train_losses, "-r")
    plt.plot(epochs_count, valid_losses, "-b")
    plt.xlabel("epoch")
    plt.ylabel("loss")
    plt.legend(["Training loss", "Validation loss"])
    plt.title("Cross entropy loss")
    fig.savefig('quora_loss.png')