def collate(data, tokenizer, input_block_size, output_block_size): """ List of tuple as an input. """ question_inputs = [] question_varible_outputs = [] condition_outputs = [] for i, example in enumerate(data): question_input = tokenizer.encode(example.question_input) question_input = fit_to_block_size(question_input, input_block_size, tokenizer.pad_token_id) question_inputs.append(question_input) if example.question_varible_output is not None: question_varible_output = tokenizer.encode( example.question_varible_output) else: question_varible_output = tokenizer.build_inputs_with_special_tokens( []) question_varible_output = fit_to_block_size(question_varible_output, output_block_size, tokenizer.pad_token_id) question_varible_outputs.append(question_varible_output) if example.condition_output is not None: condition_output = tokenizer.encode(example.condition_output) else: condition_output = tokenizer.build_inputs_with_special_tokens([]) condition_output = fit_to_block_size(condition_output, output_block_size, tokenizer.pad_token_id) condition_outputs.append(condition_output) question_inputs = torch.tensor(question_inputs) question_varible_outputs = torch.tensor(question_varible_outputs) condition_outputs = torch.tensor(condition_outputs) question_inputs_mask = build_mask(question_inputs, tokenizer.pad_token_id) question_varible_outputs_mask = build_mask(question_varible_outputs, tokenizer.pad_token_id) condition_outputs_mask = build_mask(condition_outputs, tokenizer.pad_token_id) question_varible_outputs_mask_lm_labels = build_lm_labels( question_varible_outputs, tokenizer.pad_token_id) condition_outputs_mask_lm_labels = build_lm_labels(condition_outputs, tokenizer.pad_token_id) return ( question_inputs, [question_varible_outputs, condition_outputs], question_inputs_mask, [question_varible_outputs_mask, condition_outputs_mask], [ question_varible_outputs_mask_lm_labels, condition_outputs_mask_lm_labels ], )
def collate(data, tokenizer, input_block_size,output_block_size): """ List of tuple as an input. """ inputs=[] outputs=[] for i,example in enumerate(data): input=tokenizer.encode(example.input_text) input=fit_to_block_size(input, input_block_size, tokenizer.pad_token_id) inputs.append(input) if example.output_text is not None: output=tokenizer.encode(example.output_text) else: output=tokenizer.build_inputs_with_special_tokens([]) output=fit_to_block_size(output, output_block_size, tokenizer.pad_token_id) outputs.append(output) inputs = torch.tensor(inputs) outputs = torch.tensor(outputs) encoder_mask = build_mask(inputs, tokenizer.pad_token_id) decoder_mask = build_mask(outputs, tokenizer.pad_token_id) lm_labels = build_lm_labels(outputs, tokenizer.pad_token_id) return ( inputs, outputs, encoder_mask, decoder_mask, lm_labels, )
def collate(data, tokenizer, block_size): """ List of tuple as an input. """ # remove the files with empty an story/summary, encode and fit to block data = filter(lambda x: not (len(x[0]) == 0 or len(x[1]) == 0), data) data = [ encode_for_summarization(story, summary, tokenizer) for story, summary in data ] data = [( fit_to_block_size(story, block_size, tokenizer.pad_token_id), fit_to_block_size(summary, block_size, tokenizer.pad_token_id), ) for story, summary in data] stories = torch.tensor([story for story, summary in data]) summaries = torch.tensor([summary for story, summary in data]) encoder_token_type_ids = compute_token_type_ids(stories, tokenizer.cls_token_id) encoder_mask = build_mask(stories, tokenizer.pad_token_id) decoder_mask = build_mask(summaries, tokenizer.pad_token_id) lm_labels = build_lm_labels(summaries, tokenizer.pad_token_id) return ( stories, summaries, encoder_token_type_ids, encoder_mask, decoder_mask, lm_labels, )
def gen_batch_data(x, y, batch_size): ''' 批数据生成器 :param x: :param y: :param batch_size: :return: ''' tokenizer = AutoTokenizer.from_pretrained(BERT_PATH) indices = np.arange(x.shape[0]) random.shuffle(indices) x = x[indices] y = y[indices] i = 0 x_batch, y_batch, answer = [], [], [] while True: bi = i * batch_size ei = min(i * batch_size + batch_size, len(indices)) if ei == len(indices): i = 0 else: i += 1 # for idx in range(bi,ei): # # 确保编码后也不超过max_seq_len # x_ = x[idx]["que_text"][:max_que_seq_len-3] # y_ = y[idx]["ans_text"][:max_ans_seq_len] # # 加入答案主要是为了评估进行模型选择用 # #answer.append(y_) # x_, y_ = myToken.get_tokenizer().encode(x_, y_) # x_batch.append(x_) # y_batch.append(y_) # x_batch = padding(x_batch) # y_batch = padding(y_batch) #answer = np.array(answer) # yield [x_batch, y_batch], None # tokenizer = AutoTokenizer.from_pretrained(BERT_PATH) # source, target, encoder_token_type_ids, encoder_mask, decoder_mask, lm_labels = batch # x_batch, y_batch, answer = [], [], [] # data = filter(lambda x: not (len(x[0]) == 0 or len(x[1]) == 0), data) data_que = [ tokenizer.encode(que["que_text"][0:max_que_seq_len - 2]) for que in x[bi:ei] ] data_ans = [ tokenizer.encode(ans["ans_text"][0:max_ans_seq_len - 2]) for ans in y[bi:ei] ] data_que = padding(data_que, tokenizer.pad_token_id) data_ans = padding(data_ans, tokenizer.pad_token_id) ques = torch.tensor(data_que, dtype=torch.long) anss = torch.tensor(data_ans, dtype=torch.long) encoder_token_type_ids = compute_token_type_ids( ques, tokenizer.sep_token_id) encoder_mask = build_mask(ques, tokenizer.pad_token_id) decoder_mask = build_mask(anss, tokenizer.pad_token_id) lm_labels = build_lm_labels(anss, tokenizer.pad_token_id) yield ( ques, anss, encoder_token_type_ids, encoder_mask, decoder_mask, lm_labels, )
def test_build_lm_labels(self): sequence = torch.tensor([1, 2, 3, 4, 0, 0, 0]) expected = torch.tensor([1, 2, 3, 4, -1, -1, -1]) np.testing.assert_array_equal( build_lm_labels(sequence, 0).numpy(), expected.numpy())
def test_build_lm_labels_no_padding(self): sequence = torch.tensor([1, 2, 3, 4]) expected = sequence np.testing.assert_array_equal( build_lm_labels(sequence, 0).numpy(), expected.numpy())
def collate(data, encoder_tokenizer, decoder_tokenizer, input_block_size, output_block_size): """ List of tuple as an input. """ inputs = [] outputs = [] vocabs = [] example_buffer = [] for i, example in enumerate(data): #input=encoder_tokenizer.encode(example.input) example_buffer.append(example) tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] input_tokens = ['[CLS]'] + example.input.split() + ['SEP'] for (i, token) in enumerate(input_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = encoder_tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) input = encoder_tokenizer.convert_tokens_to_ids(all_doc_tokens) example.tok_to_orig_index = tok_to_orig_index example.orig_to_tok_index = orig_to_tok_index input = fit_to_block_size(input, input_block_size, encoder_tokenizer.pad_token_id) inputs.append(input) if example.output is not None: #output=tokenizer.encode(example.output) output_tokens = example.output.split() #print('Before Whole Index: {}'.format(output_tokens)) #print('encoder input: {}'.format(all_doc_tokens)) output_tokens = translate_tokenindex_to_subtokenindex( example, output_tokens, example.vocab_indexes, example.fsa_states) #print('After Sub Index: {}'.format(output_tokens)) output = decoder_tokenizer.convert_tokens_to_ids(output_tokens) output_states = example.fsa_states else: #output=decoder_tokenizer.build_inputs_with_special_tokens(['start']) output = decoder_tokenizer.convert_tokens_to_ids(['start']) output_vocab_indexes = example.vocab_indexes output = fit_to_block_size(output, output_block_size, decoder_tokenizer.pad_token_id) output_vocab_indexes = fit_to_block_size( output_vocab_indexes, output_block_size, decoder_tokenizer.pad_token_id) outputs.append(output) vocabs.append(output_vocab_indexes) #print('debug output={}'.format(example.output.split())) #print('debug output_states={}'.format(output_states)) #print('debug output_vocab_indexes={}'.format(output_vocab_indexes)) #print('debug outputid={}'.format(output)) #if example.vocab_indexes is not None: # vocab=example.vocab_indexes #else: # vocab=[1] #vocabs.append(vocab) #print(tokenizer.vocab) #exit(-1) inputs = torch.tensor(inputs) outputs = torch.tensor(outputs) vocabs = torch.tensor(vocabs) inputs_mask = build_mask(inputs, encoder_tokenizer.pad_token_id) outputs_mask = build_mask(outputs, decoder_tokenizer.pad_token_id) vocabs_mask = build_mask(vocabs, decoder_tokenizer.pad_token_id) outputs_mask_lm_labels = build_lm_labels(outputs, decoder_tokenizer.pad_token_id) vocabs_mask_lm_labels = build_lm_labels(vocabs, decoder_tokenizer.pad_token_id) return ( inputs, outputs, vocabs, inputs_mask, outputs_mask, vocabs_mask, outputs_mask_lm_labels, vocabs_mask_lm_labels, example_buffer, )