def create_runs(): exp = create_experiment() with mlflow.start_run() as run: mlflow.log_metric("m1", 0.1) run0 = run with mlflow.start_run() as run: mlflow.log_metric("m1", 0.2) return exp, run0, run
def create_nested_runs(): exp = create_experiment() with mlflow.start_run() as run: run0 = run mlflow.log_metric("m1", 10.0) with mlflow.start_run(nested=True) as run: run0_min = run mlflow.log_metric("m1", 1.0) with mlflow.start_run(nested=True) as run: run0_max = run mlflow.log_metric("m1", 100.0) with mlflow.start_run() as run: run1 = run mlflow.log_metric("m1", 20.0) return exp, run0, run1
def create_simple_run(): exp = create_experiment() max_depth = 4 model = create_sklearn_model(max_depth) with mlflow.start_run(run_name="my_run") as run: mlflow.log_param("max_depth", max_depth) mlflow.log_metric("rmse", .789) mlflow.set_tag("my_tag", "my_val") mlflow.sklearn.log_model(model, "model") with open("info.txt", "w") as f: f.write("Hi artifact") mlflow.log_artifact("info.txt") mlflow.log_artifact("info.txt", "dir2") mlflow.log_metric("m1", 0.1) return exp, run
def create_simple_run(): exp = create_experiment() mlflow.sklearn.autolog() X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) y = np.dot(X, np.array([1, 2])) + 3 model = LinearRegression() with mlflow.start_run(run_name="my_run") as run: mlflow.log_param("p1", "0.1") mlflow.log_metric("m1", 0.1) mlflow.set_tag("my_tag", "my_val") with open("info.txt", "w") as f: f.write("Hi artifact") mlflow.log_artifact("info.txt") mlflow.log_artifact("info.txt", "dir2") model.fit(X, y) mlflow.sklearn.log_model(model, "sklearn-model") return exp, run
def test_no_run_name(): exp = create_experiment() with mlflow.start_run() as run: mlflow.log_metric("m1", 0.1) run2 = client.get_run(run.info.run_id) assert TAG_RUN_NAME not in run2.data.tags
def create_runs(num_runs): exp = create_experiment() for _ in range(0, num_runs): with mlflow.start_run(): mlflow.log_metric("m1", 0.1) return exp