示例#1
0
                                                             var_list=para_G)

solver_KSD_gp_p = optimizer_KSD(learning_rate=lr_p).minimize(KSD_gp,
                                                             var_list=para_P)

#----------------------------- training ------------------------------------

sess = tf.Session()
if load_it == 0:
    sess.run(tf.global_variables_initializer())
else:
    saver = tf.train.Saver()
    saver.restore(sess, save_path=workdir + '/model/{}'.format(load_it))

best_mmd, best_kl, best_rate = 10.0, 10.0, 0.
datainput = DataInput(data=true_sample, batch_size=mb_size)
start_time = datetime.now()
iterations = 0

for it in range(load_it, load_it + n_iter + 1):

    i_critic = 0

    while i_critic <= n_critic:
        _, loss_d = sess.run(
            [solver_WGAN_D, D_loss],
            feed_dict={
                z: sample_z(mb_size, z_dim),
                X_true: datainput.get_batch(),
                isTraining: True
            })
示例#2
0
fake_sample = sess.run(G_sample,
                       feed_dict={
                           z: sample_z(show_size, z_dim),
                           isTraining: False
                       })
fake_density = sess.run(Density,
                        feed_dict={
                            Mesh: fake_sample,
                            isTraining: False
                        })

X_range, Y_range = XY_range[0], XY_range[1]
mesh_input = np.stack([np.reshape(X_range, [-1]),
                       np.reshape(Y_range, [-1])], 1)
meshinput = DataInput(data=mesh_input, batch_size=mb_size)
mesh_f_density = np.zeros([mesh_input.shape[0], 1])
for i in range(mesh_input.shape[0] // mb_size):
    mesh_f_density[i * mb_size:min((i + 1) *
                                   mb_size, mesh_input.shape[0])] = sess.run(
                                       Density,
                                       feed_dict={
                                           Mesh: meshinput.get_batch(),
                                           isTraining: False
                                       })
mesh_f_density = np.reshape(mesh_f_density,
                            [X_range.shape[0], X_range.shape[1]])

norm = np.sum(mesh_t_density)
mesh_f_density_n = mesh_f_density / np.sum(mesh_f_density) * norm
示例#3
0
solver_KSD_gp_g = optimizer_KSD(learning_rate=lr_g).minimize(KSD_gp, var_list=para_G)

solver_KSD_gp_p = optimizer_KSD(learning_rate=lr_p).minimize(KSD_gp, var_list=para_P)


#----------------------------- training ------------------------------------

sess = tf.Session()
if load_it==0:
    sess.run(tf.global_variables_initializer())
else:  
    saver = tf.train.Saver()
    saver.restore(sess, save_path=workdir+'/model/{}'.format(load_it))

best_mmd, best_kl, best_rate = 10.0, 10.0, 0.
datainput = DataInput(data=true_sample, batch_size=mb_size)
start_time = datetime.now()
iterations = 0

for it in range(load_it, load_it+n_iter+1):

    i_critic = 0

    while i_critic<=n_critic:
        _, loss_d = sess.run([solver_GAN_D, D_loss],
                        feed_dict={z: sample_z(mb_size, z_dim), 
                                X_true: datainput.get_batch(),
                                isTraining: True})
        i_critic += 1
    
    _, loss_g = sess.run([solver_GAN_G, G_loss],