valsl = mk_valsl() # take log if 0: mval = min(valsl) - 0.0001 print 'Min: %f' % mval # Prevent negative current issues valsl = [math.log(x - mval) for x in valsl] # Limit numbers that are more than a few std dev away # this messes up way that hist eq currently works # although not entirely sure why # helped a lot if 1: print valsl[0:10] sd = statistics.stdev(valsl) u = statistics.mean(valsl) sds = 2 print 'Mean: %f' % u print 'SD: %f' % sd keep_min = u - sd * sds keep_max = u + sd * sds print 'Keeping' print ' Min: %f' % keep_min print ' Max: %f' % keep_max valsl = [min(keep_max, x) for x in valsl] valsl = [max(keep_min, x) for x in valsl] if 1: print 'Equalizing...' valsl = histeq(valsl)
break # Account for second derrivitive val = opened[i + 2] - opened[0] valsl.append(val) print 'Cols: %d' % cols print 'Rows: %d' % rows # Limit numbers that are more than a few std dev away # this messes up way that hist eq currently works # although not entirely sure why # helped a lot if 1: print valsl[0:10] sd = statistics.stdev(valsl) u = statistics.mean(valsl) sds = 2 print 'Mean: %f' % u print 'SD: %f' % sd keep_min = u - sd * sds keep_max = u + sd * sds print 'Keeping' print ' Min: %f' % keep_min print ' Max: %f' % keep_max valsl = [min(keep_max, x) for x in valsl] valsl = [max(keep_min, x) for x in valsl] if 0: print 'Equalizing...' valsl = histeq(valsl)
while True: this = gp.get() ig, a, b = this igstr = gp307.fmt(ig) astr = gp307.fmt(a) bstr = gp307.fmt(b) t = time.time() print '%s: IG %s, A %s, B %s' % (time.strftime('%F %T'), igstr, astr, bstr) if args.diff and lasts: last = lasts[0] diff = [x - y for x, y in zip(this, last)] print ' D IG %s, A %s, B %s' % (fmts(diff[0]), fmts(diff[1]), fmts(diff[2])) if f: f.write('%s, %s, %s, %s\n' % (t, igstr, astr, bstr)) f.flush() lasts = [this] + lasts[0:args.trend_n - 1] if args.stat and len(lasts) > 1: s = '' for chan in zip(*lasts): chanl = [math.log(x, 10) for x in chan] sd = statistics.stdev(chanl) u = statistics.mean(chanl) s += '(%s, %s) ' % (fmte(u), fmte(sd)) print ' % 3u %s' % (len(lasts), s)
ig, a, b = this igstr = gp307.fmt(ig) astr = gp307.fmt(a) bstr = gp307.fmt(b) t = time.time() print '%s: IG %s, A %s, B %s' % (time.strftime('%F %T'), igstr, astr, bstr) if args.diff and lasts: last = lasts[0] diff = [x - y for x, y in zip(this, last)] print ' D IG %s, A %s, B %s' % (fmts(diff[0]), fmts( diff[1]), fmts(diff[2])) if f: f.write('%s, %s, %s, %s\n' % (t, igstr, astr, bstr)) f.flush() lasts = [this] + lasts[0:args.trend_n - 1] if args.stat and len(lasts) > 1: s = '' for chan in zip(*lasts): chanl = [math.log(x, 10) for x in chan] sd = statistics.stdev(chanl) u = statistics.mean(chanl) s += '(%s, %s) ' % (fmte(u), fmte(sd)) print ' % 3u %s' % (len(lasts), s)