def main():
    tf.logging.set_verbosity(tf.logging.INFO)

    models_dir = 'training/single_column/models3'

    # load the data
    df, stim = load_data()
    columns = list(df.columns)[1:]
    test_data = {'image': stim[:50, 16:-16, 16:-16]}

    # get predictions from all the models
    column_predictions = {}
    for i, column_name in enumerate(columns):
        print('Predicting values for the column "%s"...' % column_name)

        # find the model directory
        best_models_path = root_dir('%s/%d_%s/export/best' % (models_dir, i, column_name))
        latest_model_subdir = sorted(os.listdir(best_models_path), reverse=True)[0]
        latest_model_dir = os.path.join(best_models_path, latest_model_subdir)

        # create predictor
        predict_fn = predictor.from_saved_model(latest_model_dir)

        # get predictions
        column_predictions[column_name] = predict_fn(test_data)['spike']

    # generate a submission file
    with open(root_dir('data/submission/single_column/3.csv'), 'w') as f:
        writer = csv.writer(f)
        writer.writerow(['Id'] + columns)
        for i in range(len(test_data['image'])):
            writer.writerow([i] + [column_predictions[column_name][i] for column_name in columns])
def main():
    # enable TensorFlow logging
    tf.logging.set_verbosity(tf.logging.INFO)
    tf_logging._get_logger().propagate = False  # fix double messages

    # directory with the exported model
    saved_model_dir = root_dir('export/final_model')

    # image size that the model accepts
    image_size = 48

    # load the images from the dataset
    _, imgs = load_data()

    # get test images and crop them to the right size
    imgs = get_test_dataset(imgs, image_size)

    # load the model
    predict_fn = tf.contrib.predictor.from_saved_model(saved_model_dir)

    # get predictions
    res = predict_fn({'image': imgs})

    # print predicted spikes
    pprint(res['spikes'])
示例#3
0
def main(use_best_value: bool):
    models_dir = root_dir('training/single_column/models3')
    model_subdirs = os.listdir(models_dir)

    models_rmses = []
    for subdir in model_subdirs:
        if subdir.startswith('.'):
            continue

        # read the model summaries
        eval_dir = os.path.join(models_dir, subdir, 'eval')
        eval_results = read_eval_metrics(eval_dir)

        if use_best_value:
            # get the best RMSE value
            rmse = None
            for step, metrics in eval_results.items():
                val = metrics['rmse']
                if (rmse is None) or (val < rmse):
                    rmse = val
        else:
            # get the latest RMSE value
            rmse = eval_results[next(reversed(eval_results))]['rmse']

        models_rmses.append(rmse)

    print('Mean RMSE: %.04f' % (sum(models_rmses) / len(models_rmses)))
def generate_submission(model_type, model_dir, submission_num):
    submission_dir = root_dir('data/submission/%s/%s' % (model_type, submission_num))
    if os.path.isdir(submission_dir):
        raise ValueError('Submission #%d already exists' % submission_num)

    os.makedirs(submission_dir)

    # load the data
    df, stim = load_data()
    columns = list(df.columns)[1:]
    config = load_model_config(model_dir)
    test_data = {'image': get_test_dataset(stim, config['model']['image_size'])}

    # create the predictor
    export_dir = root_dir(os.path.join(model_dir, 'export', 'best'))
    latest_model_subdir = sorted(os.listdir(export_dir), reverse=True)[0]
    latest_model_dir = os.path.join(export_dir, latest_model_subdir)

    # get predictor
    predict_fn = predictor.from_saved_model(latest_model_dir)

    # get predictions
    predictions = predict_fn(test_data)['spikes']

    # generate a submission file
    with open(os.path.join(submission_dir, 'submission_%d.csv' % submission_num), 'w') as f:
        writer = csv.writer(f)
        writer.writerow(['Id'] + columns)
        for i in range(len(test_data['image'])):
            writer.writerow([i] + list(predictions[i]))

    # copy config file
    config_path = get_model_config_path(model_dir)
    copyfile(config_path, os.path.join(submission_dir, CONFIG_FILENAME))

    # copy the model
    copytree(latest_model_dir, os.path.join(submission_dir, 'model'))
def model_fn(features, labels, mode, params):
    image = features['image']
    num_classes = params['model']['num_classes']
    is_training = (mode == tf.estimator.ModeKeys.TRAIN)

    # build convolutional layers
    conv = build_conv_layers(image, params['model']['conv_layers'], is_training)

    # load convolutional and dense layers from a checkpoint
    freeze_variables = {}
    checkpoint_path = params['training'].get('checkpoint_path')
    freeze_restored_variables = params['training'].get('freeze_restored_variables', False)
    if checkpoint_path:
        tvars = tf.trainable_variables()
        assignment_map = {}
        for var in tvars:
            assignment_map[var.name[:-2]] = var
            if freeze_restored_variables:
                freeze_variables[var.name] = True

        tf.train.init_from_checkpoint(root_dir(checkpoint_path), assignment_map)

    # build dense layers
    dense = build_dense_layers(conv, params['model']['dense_layers'], is_training)

    # get logits
    if 'subnet' in params:
        # build NN for each neuron
        subnet_dropout_rate = params['model']['subnet'].get('subnet_dropout_rate', 0)
        if subnet_dropout_rate:
            dense = tf.layers.dropout(inputs=dense, rate=subnet_dropout_rate, training=is_training)

        logits_layer_params = dict(params['model']['logits_layer'])
        logits_layer_params['num_units'] = 1

        logits_concat = []
        for i in range(num_classes):
            subnet_dense = build_dense_layers(dense, params['model']['subnet']['dense_layers'], is_training)
            subnet_logits = build_dense_layers(subnet_dense, [logits_layer_params], is_training)
            logits_concat.append(subnet_logits)

        logits = tf.concat(logits_concat, axis=-1)
    else:
        # a single layer to get a spike
        logits_layer_params = dict(params['model']['logits_layer'])
        logits_layer_params['num_units'] = num_classes
        logits = build_dense_layers(dense, [logits_layer_params], is_training)

    # return prediction specification
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode=mode, predictions={'spikes': logits})

    # make sure that images were distorted correctly and display them in TensorBoard
    max_images = 12
    images = image[:max_images]
    assert_min = tf.assert_greater_equal(tf.reduce_min(images), 0.0, message='Image contains values less than 0')
    assert_max = tf.assert_less_equal(tf.reduce_max(images), 1.0, message='Image contains values greater than 1')
    with tf.control_dependencies([assert_min, assert_max]):
        tf.summary.image('images', tf.cast(images * 255, dtype=tf.uint8), max_outputs=max_images)

    # compute the loss
    nan_mask = tf.cast(features['nan_mask'], tf.float32)
    mse_loss = tf.losses.mean_squared_error(labels=labels, predictions=logits, weights=nan_mask)
    loss = mse_loss + tf.losses.get_regularization_loss()

    # get train variables
    train_vars = [var for var in tf.trainable_variables() if var.name not in freeze_variables]

    # return training specification
    if mode == tf.estimator.ModeKeys.TRAIN:
        train_op = tf.contrib.layers.optimize_loss(
            loss=loss,
            global_step=tf.train.get_global_step(),
            learning_rate=params['training']['learning_rate'],
            optimizer='Adam',
            summaries=['learning_rate', 'loss', 'gradients', 'gradient_norm'],
            variables=train_vars,
        )

        # perform update ops for batch normalization
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        train_op = tf.group([train_op, update_ops])

        return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

    # evaluation metrics
    eval_metric_ops = {
        'rmse': tf.metrics.root_mean_squared_error(labels=labels, predictions=logits, weights=nan_mask),
    }

    # RMSE per column
    for i in range(num_classes):
        eval_metric_ops['rmse/column%d' % i] = tf.metrics.root_mean_squared_error(labels=labels[:, i],
                                                                                  predictions=logits[:, i],
                                                                                  weights=nan_mask[:, i])

    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main():
    tf.logging.set_verbosity(tf.logging.INFO)

    eval_steps = 10
    eval_size = 50
    export_best_models = True
    train_column_id = None
    models_dir = 'training/single_column/models3'
    models_postfix = ''

    # load the data
    df, imgs = load_data()
    columns = list(df.columns)[1:]

    # train a model for each column
    for i, column_name in enumerate(columns):
        if (train_column_id is not None) and (i != train_column_id):
            continue

        print('Training the model for the column "%s"...' % column_name)

        train_imgs, train_labels, eval_imgs, eval_labels = get_column_datasets(column_name, df, imgs, eval_size)

        print('Train size: %d, eval size: %d' % (len(train_labels), len(eval_labels)))

        # create the estimator
        model_dir = root_dir('%s/%d_%s' % (models_dir, i, column_name))
        if models_postfix:
            model_dir += '_' + models_postfix

        estimator = tf.estimator.Estimator(
            model_fn=model_fn,
            config=tf.estimator.RunConfig(
                model_dir=model_dir,
                save_checkpoints_steps=eval_steps,
                save_summary_steps=eval_steps,
            )
        )

        # training input function
        train_data = {'image': train_imgs}
        train_input_fn = tf.estimator.inputs.numpy_input_fn(x=train_data, y=train_labels,
                                                            batch_size=len(train_labels), num_epochs=None, shuffle=True)
        # evaluation training function
        eval_data = {'image': eval_imgs}
        eval_input_fn = tf.estimator.inputs.numpy_input_fn(x=eval_data, y=eval_labels, num_epochs=1, shuffle=False)

        # hooks
        early_stopping_hook = early_stopping.stop_if_no_decrease_hook(estimator, 'rmse', eval_steps * 10,
                                                                      run_every_secs=None, run_every_steps=eval_steps)
        exporter = tf.estimator.BestExporter(name='best',
                                             serving_input_receiver_fn=serving_input_receiver_fn,
                                             exports_to_keep=1,
                                             compare_fn=lambda best_eval_result, current_eval_result:
                                                 # should be "<=" to export the best model on the 1st evaluation
                                                 current_eval_result['rmse'] <= best_eval_result['rmse'],
                                             )

        # train and evaluate
        train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, hooks=[early_stopping_hook])
        eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn,
                                          exporters=(exporter if export_best_models else None),
                                          throttle_secs=0)

        tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
示例#7
0
def load_data():
    df = pd.read_csv(root_dir('data/train.csv'))
    imgs = np.load(root_dir('data/stim.npy'))

    return df, imgs
def tune_hyperparameters(model_type: str, experiment_group: str,
                         experiment_name: str):
    ray_num_cpus = 4
    num_cpus_per_process = 1
    num_gpus_per_process = 0.5

    ray.init(num_cpus=ray_num_cpus,
             ignore_reinit_error=True,
             include_webui=False)

    tuning_config_dir = root_dir('configs/%s/hp_tuning' % model_type)
    models_dir = root_dir('training/%s/hp_tuning/%s/%s' %
                          (model_type, experiment_group, experiment_name))
    ray_results_dir = root_dir('ray_results/%s' % experiment_group)

    # read the base config
    with open(os.path.join(tuning_config_dir, 'config.yaml')) as f:
        base_config = yaml.safe_load(f)

    # read mutations config
    with open(os.path.join(tuning_config_dir, 'mutations.yaml')) as f:
        mutations_grid = yaml.safe_load(f)

    # get mutated configs
    mutations = get_mutations(mutations_grid)

    # use only fraction of GPU
    session_config = None
    if num_gpus_per_process < 1:
        session_config = tf.ConfigProto()
        session_config.gpu_options.per_process_gpu_memory_fraction = num_gpus_per_process

    def tune_fn(tune_config, reporter):
        mutation = tune_config['mutation']

        # apply mutation to a base config
        config = mutate_config(base_config, mutation)

        # get model's directory
        model_dir = os.path.join(models_dir, generate_mutation_name(mutation))

        # save the config file to the model's directory
        write_model_config(model_dir, yaml.safe_dump(config))

        # train the model
        model_builder = create_builder(model_type, config)
        train(model_builder, model_dir, reporter, session_config)

    configuration = tune.Experiment(
        experiment_name,
        run=tune_fn,
        local_dir=ray_results_dir,
        config={
            'mutation': tune.grid_search(mutations),
        },
        trial_name_creator=tune.function(
            lambda trial: generate_mutation_name(trial.config['mutation'])),
        resources_per_trial={
            'cpu': num_cpus_per_process,
            'gpu': num_gpus_per_process,
        },
    )

    tune.run_experiments(configuration)