def train(config): os.environ['CUDA_VISIBLE_DEVICES'] = str(config.gpu) MU = 5000.0 SDR = generate_HDR_dataset.DataGenerator(config.images_path, config.train_batch_size) lr = config.lr model_x = HDR.NHDRRNet(config) x = Input(shape=(3, 256, 256, 6)) out = model_x.main_model(x) model = Model(inputs=x, outputs=out) model.summary() if config.load_pretrain: model.load_weights(config.pretrain_dir) print('pretrain loaded') min_loss = 10000100 print("Start training ...") for epoch in range(config.num_epochs): total_loss = 0 if epoch + 1 > 80000: if epoch + 1 % 20000 == 0: lr = lr * 0.9 optimizer = tf.keras.optimizers.Adam(learning_rate=lr, epsilon=1e-8) for iteration in range(len(SDR)): with tf.GradientTape() as tape: img_lowlight = SDR[iteration] # img_lowlight = augment(img_lowlight) imgs = img_lowlight[:, :3, :, :, :] imgs = tf.dtypes.cast(imgs, tf.float32) gt = img_lowlight[:, 3, :, :, :3] gt = tf.dtypes.cast(gt, tf.float32) out = model(imgs) gt = tf.math.log(1 + MU * gt) / tf.math.log(1 + MU) out = tf.math.log(1 + MU * out) / tf.math.log(1 + MU) mse = tf.keras.losses.MeanSquaredError() loss = mse(gt, out) # loss = compute_loss(gt, out) grads = tape.gradient(loss, model.trainable_weights) optimizer.apply_gradients(zip(grads, model.trainable_weights)) if (iteration + 1) % config.checkpoint_ep == 0: message = '' if loss < min_loss: min_loss = loss.numpy() model.save_weights( os.path.join(config.checkpoints_folder, "best.h5")) print(' min loss: %.5f' % min_loss) progress(epoch + 1, (iteration + 1), len(SDR), total_loss=loss, message='') if (epoch + 1) % config.display_ep == 0: run(config, model) print(' -- evaluated, check results please!')
def run( weights=ROOT / 'yolov5s.pt', # weights path imgsz=640, # inference size (pixels) batch_size=1, # batch size data=ROOT / 'data/coco128.yaml', # dataset.yaml path device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu half=False, # use FP16 half-precision inference ): y, t = [], time.time() formats = export.export_formats() device = select_device(device) for i, (name, f, suffix, gpu) in formats.iterrows( ): # index, (name, file, suffix, gpu-capable) try: if device.type != 'cpu': assert gpu, f'{name} inference not supported on GPU' if f == '-': w = weights # PyTorch format else: w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others assert suffix in str(w), 'export failed' result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half) metrics = result[ 0] # metrics (mp, mr, map50, map, *losses(box, obj, cls)) speeds = result[2] # times (preprocess, inference, postprocess) y.append([name, metrics[3], speeds[1]]) # mAP, t_inference except Exception as e: LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}') y.append([name, None, None]) # mAP, t_inference # Print results LOGGER.info('\n') parse_opt() notebook_init() # print system info py = pd.DataFrame( y, columns=['Format', '[email protected]:0.95', 'Inference time (ms)']) LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)') LOGGER.info(str(py)) return py
def run( weights=ROOT / 'yolov5s.pt', # weights path imgsz=640, # inference size (pixels) batch_size=1, # batch size data=ROOT / 'data/coco128.yaml', # dataset.yaml path ): y, t = [], time.time() formats = export.export_formats() for i, (name, f, suffix) in formats.iterrows(): # index, (name, file, suffix) try: w = weights if f == '-' else export.run( weights=weights, imgsz=[imgsz], include=[f], device='cpu')[-1] assert suffix in str(w), 'export failed' result = val.run(data, w, batch_size, imgsz=imgsz, plots=False, device='cpu', task='benchmark') metrics = result[ 0] # metrics (mp, mr, map50, map, *losses(box, obj, cls)) speeds = result[2] # times (preprocess, inference, postprocess) y.append([name, metrics[3], speeds[1]]) # mAP, t_inference except Exception as e: LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}') y.append([name, None, None]) # mAP, t_inference # Print results LOGGER.info('\n') parse_opt() notebook_init() # print system info py = pd.DataFrame( y, columns=['Format', '[email protected]:0.95', 'Inference time (ms)']) LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)') LOGGER.info(str(py)) return py
def train( hyp, # path/to/hyp.yaml or hyp dictionary opt, device, callbacks): save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze # Directories w = save_dir / 'weights' # weights dir (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir last, best = w / 'last.pt', w / 'best.pt' # Hyperparameters if isinstance(hyp, str): with open(hyp, errors='ignore') as f: hyp = yaml.safe_load(f) # load hyps dict LOGGER.info( colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) # Save run settings if not evolve: with open(save_dir / 'hyp.yaml', 'w') as f: yaml.safe_dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: yaml.safe_dump(vars(opt), f, sort_keys=False) # Loggers data_dict = None if RANK in [-1, 0]: loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance if loggers.wandb: data_dict = loggers.wandb.data_dict if resume: weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size # Register actions for k in methods(loggers): callbacks.register_action(k, callback=getattr(loggers, k)) # Config plots = not evolve # create plots cuda = device.type != 'cpu' init_seeds(1 + RANK) with torch_distributed_zero_first(LOCAL_RANK): data_dict = data_dict or check_dataset(data) # check if None train_path, val_path = data_dict['train'], data_dict['val'] nc = 1 if single_cls else int(data_dict['nc']) # number of classes names = ['item'] if single_cls and len( data_dict['names']) != 1 else data_dict['names'] # class names assert len( names ) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check is_coco = isinstance(val_path, str) and val_path.endswith( 'coco/val2017.txt') # COCO dataset # Model check_suffix(weights, '.pt') # check weights pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(LOCAL_RANK): weights = attempt_download( weights) # download if not found locally ckpt = torch.load(weights, map_location='cpu' ) # load checkpoint to CPU to avoid CUDA memory leak model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = [ 'anchor' ] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys csd = ckpt['model'].float().state_dict( ) # checkpoint state_dict as FP32 csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(csd, strict=False) # load LOGGER.info( f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}' ) # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create # Freeze freeze = [ f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0])) ] # layers to freeze for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): LOGGER.info(f'freezing {k}') v.requires_grad = False # Image size gs = max(int(model.stride.max()), 32) # grid size (max stride) imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple # Batch size if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size batch_size = check_train_batch_size(model, imgsz) loggers.on_params_update({"batch_size": batch_size}) # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") g0, g1, g2 = [], [], [] # optimizer parameter groups for v in model.modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias g2.append(v.bias) if isinstance(v, nn.BatchNorm2d): # weight (no decay) g0.append(v.weight) elif hasattr(v, 'weight') and isinstance( v.weight, nn.Parameter): # weight (with decay) g1.append(v.weight) if opt.optimizer == 'Adam': optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum elif opt.optimizer == 'AdamW': optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({ 'params': g1, 'weight_decay': hyp['weight_decay'] }) # add g1 with weight_decay optimizer.add_param_group({'params': g2}) # add g2 (biases) LOGGER.info( f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups " f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias") del g0, g1, g2 # Scheduler if opt.cos_lr: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] else: lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf' ] # linear scheduler = lr_scheduler.LambdaLR( optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if RANK in [-1, 0] else None # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Epochs start_epoch = ckpt['epoch'] + 1 if resume: assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.' if epochs < start_epoch: LOGGER.info( f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs." ) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, csd # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: LOGGER.warning( 'WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.' ) model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) LOGGER.info('Using SyncBatchNorm()') # Trainloader train_loader, dataset = create_dataloader( train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache, rect=opt.rect, rank=LOCAL_RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '), shuffle=True) mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class nb = len(train_loader) # number of batches assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' # Process 0 if RANK in [-1, 0]: val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1, workers=workers * 2, pad=0.5, prefix=colorstr('val: '))[0] if not resume: labels = np.concatenate(dataset.labels, 0) # c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: plot_labels(labels, names, save_dir) # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) model.half().float() # pre-reduce anchor precision callbacks.run('on_pretrain_routine_end') # DDP mode if cuda and RANK != -1: model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) # Model attributes nl = de_parallel( model).model[-1].nl # number of detection layers (to scale hyps) hyp['box'] *= 3 / nl # scale to layers hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640)**2 * 3 / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.class_weights = labels_to_class_weights( dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training last_opt_step = -1 maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0 ) # P, R, [email protected], [email protected], val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) stopper = EarlyStopping(patience=opt.patience) compute_loss = ComputeLoss(model) # init loss class LOGGER.info( f'Image sizes {imgsz} train, {imgsz} val\n' f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' f"Logging results to {colorstr('bold', save_dir)}\n" f'Starting training for {epochs} epochs...') for epoch in range( start_epoch, epochs ): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional, single-GPU only) if opt.image_weights: cw = model.class_weights.cpu().numpy() * ( 1 - maps)**2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Update mosaic border (optional) # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(3, device=device) # mean losses if RANK != -1: train_loader.sampler.set_epoch(epoch) pbar = enumerate(train_loader) LOGGER.info( ('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size')) if RANK in [-1, 0]: pbar = tqdm( pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar optimizer.zero_grad() for i, ( imgs, targets, paths, _ ) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float( ) / 255 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max( 1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [ hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch) ]) if 'momentum' in x: x['momentum'] = np.interp( ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:] ] # new shape (stretched to gs-multiple) imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_items = compute_loss( pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize if ni - last_opt_step >= accumulate: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni # Log if RANK in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1 ) # update mean losses mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn) if callbacks.stop_training: return # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for loggers scheduler.step() if RANK in [-1, 0]: # mAP callbacks.run('on_train_epoch_end', epoch=epoch) ema.update_attr(model, include=[ 'yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights' ]) final_epoch = (epoch + 1 == epochs) or stopper.possible_stop if not noval or final_epoch: # Calculate mAP results, maps, _ = val.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=ema.ema, single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, plots=False, callbacks=callbacks, compute_loss=compute_loss) # Update best mAP fi = fitness(np.array(results).reshape( 1, -1)) # weighted combination of [P, R, [email protected], [email protected]] if fi > best_fitness: best_fitness = fi log_vals = list(mloss) + list(results) + lr callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) # Save model if (not nosave) or (final_epoch and not evolve): # if save ckpt = { 'epoch': epoch, 'best_fitness': best_fitness, 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None, 'date': datetime.now().isoformat() } # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0): torch.save(ckpt, w / f'epoch{epoch}.pt') del ckpt callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) # Stop Single-GPU if RANK == -1 and stopper(epoch=epoch, fitness=fi): break # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576 # stop = stopper(epoch=epoch, fitness=fi) # if RANK == 0: # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks # Stop DPP # with torch_distributed_zero_first(RANK): # if stop: # break # must break all DDP ranks # end epoch ---------------------------------------------------------------------------------------------------- # end training ----------------------------------------------------------------------------------------------------- if RANK in [-1, 0]: LOGGER.info( f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.' ) for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if f is best: LOGGER.info(f'\nValidating {f}...') results, _, _ = val.run( data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=attempt_load(f, device).half(), iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65 single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, save_json=is_coco, verbose=True, plots=True, callbacks=callbacks, compute_loss=compute_loss) # val best model with plots if is_coco: callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) callbacks.run('on_train_end', last, best, plots, epoch, results) LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") torch.cuda.empty_cache() return results
if __name__ == "__main__": parser = argparse.ArgumentParser() # Input Parameters parser.add_argument('--test_path', type=str, default="Test/EXTRA/001/") parser.add_argument('--gpu', type=str, default='0') parser.add_argument('--weight_test_path', type=str, default="weights/best.h5") parser.add_argument('--filter', type=int, default=32) parser.add_argument('--attention_filter', type=int, default=64) parser.add_argument('--kernel', type=int, default=3) parser.add_argument('--encoder_kernel', type=int, default=3) parser.add_argument('--decoder_kernel', type=int, default=4) parser.add_argument('--triple_pass_filter', type=int, default=256) config = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = config.gpu model_x = NHDRRNet(config) x = Input(shape=(3, 768, 1024, 6)) out = model_x.main_model(x) model = Model(inputs=x, outputs=out) model.load_weights(config.weight_test_path) model.summary() run(config, model)
def run( weights=ROOT / 'yolov5s.pt', # weights path imgsz=640, # inference size (pixels) batch_size=1, # batch size data=ROOT / 'data/coco128.yaml', # dataset.yaml path device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu half=False, # use FP16 half-precision inference test=False, # test exports only pt_only=False, # test PyTorch only ): y, t = [], time.time() device = select_device(device) for i, (name, f, suffix, gpu) in export.export_formats().iterrows( ): # index, (name, file, suffix, gpu-capable) try: assert i != 9, 'Edge TPU not supported' assert i != 10, 'TF.js not supported' if device.type != 'cpu': assert gpu, f'{name} inference not supported on GPU' # Export if f == '-': w = weights # PyTorch format else: w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others assert suffix in str(w), 'export failed' # Validate result = val.run(data, w, batch_size, imgsz, plots=False, device=device, task='benchmark', half=half) metrics = result[ 0] # metrics (mp, mr, map50, map, *losses(box, obj, cls)) speeds = result[2] # times (preprocess, inference, postprocess) y.append([ name, round(file_size(w), 1), round(metrics[3], 4), round(speeds[1], 2) ]) # MB, mAP, t_inference except Exception as e: LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}') y.append([name, None, None, None]) # mAP, t_inference if pt_only and i == 0: break # break after PyTorch # Print results LOGGER.info('\n') parse_opt() notebook_init() # print system info c = ['Format', 'Size (MB)', '[email protected]:0.95', 'Inference time (ms)' ] if map else ['Format', 'Export', '', ''] py = pd.DataFrame(y, columns=c) LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)') LOGGER.info(str(py if map else py.iloc[:, :2])) return py
def train( hyp, # path/to/hyp.yaml or hyp dictionary opt, device, ): save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, = \ opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ opt.resume, opt.noval, opt.nosave, opt.workers # Directories save_dir = Path(save_dir) wdir = save_dir / 'weights' wdir.mkdir(parents=True, exist_ok=True) # make dir last = wdir / 'last.pt' best = wdir / 'best.pt' results_file = save_dir / 'results.txt' # Hyperparameters if isinstance(hyp, str): with open(hyp) as f: hyp = yaml.safe_load(f) # load hyps dict LOGGER.info( colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) # Save run settings with open(save_dir / 'hyp.yaml', 'w') as f: yaml.safe_dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: yaml.safe_dump(vars(opt), f, sort_keys=False) # Configure plots = not evolve # create plots cuda = device.type != 'cpu' init_seeds(1 + RANK) with open(data) as f: data_dict = yaml.safe_load(f) # data dict # Loggers loggers = {'wandb': None, 'tb': None} # loggers dict if RANK in [-1, 0]: # TensorBoard if not evolve: prefix = colorstr('tensorboard: ') LOGGER.info( f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/" ) loggers['tb'] = SummaryWriter(str(save_dir)) # W&B opt.hyp = hyp # add hyperparameters run_id = torch.load(weights).get('wandb_id') if weights.endswith( '.pt') and os.path.isfile(weights) else None run_id = run_id if opt.resume else None # start fresh run if transfer learning wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict) loggers['wandb'] = wandb_logger.wandb if loggers['wandb']: data_dict = wandb_logger.data_dict weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # may update weights, epochs if resuming nc = 1 if single_cls else int(data_dict['nc']) # number of classes names = ['item'] if single_cls and len( data_dict['names']) != 1 else data_dict['names'] # class names assert len(names) == nc, '%g names found for nc=%g dataset in %s' % ( len(names), nc, data) # check is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset # Model pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(RANK): weights = attempt_download( weights) # download if not found locally ckpt = torch.load(weights, map_location=device) # load checkpoint model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = [ 'anchor' ] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(state_dict, strict=False) # load LOGGER.info( 'Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create with torch_distributed_zero_first(RANK): check_dataset(data_dict) # check train_path = data_dict['train'] val_path = data_dict['val'] # Freeze freeze = [] # parameter names to freeze (full or partial) for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): print('freezing %s' % k) v.requires_grad = False # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): pg2.append(v.bias) # biases if isinstance(v, nn.BatchNorm2d): pg0.append(v.weight) # no decay elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): pg1.append(v.weight) # apply decay if opt.adam: optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({ 'params': pg1, 'weight_decay': hyp['weight_decay'] }) # add pg1 with weight_decay optimizer.add_param_group({'params': pg2}) # add pg2 (biases) LOGGER.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Scheduler https://arxiv.org/pdf/1812.01187.pdf # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR if opt.linear_lr: lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp[ 'lrf'] # linear else: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) # EMA ema = ModelEMA(model) if RANK in [-1, 0] else None # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Results if ckpt.get('training_results') is not None: results_file.write_text( ckpt['training_results']) # write results.txt # Epochs start_epoch = ckpt['epoch'] + 1 if resume: assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % ( weights, epochs) if epochs < start_epoch: LOGGER.info( '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, state_dict # Image sizes gs = max(int(model.stride.max()), 32) # grid size (max stride) nl = model.model[ -1].nl # number of detection layers (used for scaling hyp['obj']) imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: logging.warning( 'DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.' ) model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and RANK != -1: raise Exception( 'can not train with --sync-bn, known issue https://github.com/ultralytics/yolov5/issues/3998' ) model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) LOGGER.info('Using SyncBatchNorm()') # Trainloader train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: ')) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class nb = len(train_loader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % ( mlc, nc, data, nc - 1) # Process 0 if RANK in [-1, 0]: val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=opt.cache_images and not noval, rect=True, rank=-1, workers=workers, pad=0.5, prefix=colorstr('val: '))[0] if not resume: labels = np.concatenate(dataset.labels, 0) # c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: plot_labels(labels, names, save_dir, loggers) # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) model.half().float() # pre-reduce anchor precision # DDP mode if cuda and RANK != -1: model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) # Model parameters hyp['box'] *= 3. / nl # scale to layers hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640)**2 * 3. / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou) model.class_weights = labels_to_class_weights( dataset.labels, nc).to(device) * nc # attach class weights model.names = names # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training last_opt_step = -1 maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0 ) # P, R, [email protected], [email protected], val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) compute_loss = ComputeLoss(model) # init loss class LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' f'Using {train_loader.num_workers} dataloader workers\n' f'Logging results to {save_dir}\n' f'Starting training for {epochs} epochs...') for epoch in range( start_epoch, epochs ): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional) if opt.image_weights: # Generate indices if RANK in [-1, 0]: cw = model.class_weights.cpu().numpy() * ( 1 - maps)**2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices( range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Broadcast if DDP if RANK != -1: indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int() dist.broadcast(indices, 0) if RANK != 0: dataset.indices = indices.cpu().numpy() # Update mosaic border # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(4, device=device) # mean losses if RANK != -1: train_loader.sampler.set_epoch(epoch) pbar = enumerate(train_loader) LOGGER.info( ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size')) if RANK in [-1, 0]: pbar = tqdm(pbar, total=nb) # progress bar optimizer.zero_grad() for i, ( imgs, targets, paths, _ ) in pbar: # batch ------------------------------------------------------------- ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float( ) / 255.0 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max( 1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [ hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch) ]) if 'momentum' in x: x['momentum'] = np.interp( ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:] ] # new shape (stretched to gs-multiple) imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_items = compute_loss( pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize if ni - last_opt_step >= accumulate: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni # Print if RANK in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1 ) # update mean losses mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) s = ('%10s' * 2 + '%10.4g' * 6) % (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]) pbar.set_description(s) # Plot if plots and ni < 3: f = save_dir / f'train_batch{ni}.jpg' # filename Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() if loggers['tb'] and ni == 0: # TensorBoard with warnings.catch_warnings(): warnings.simplefilter( 'ignore') # suppress jit trace warning loggers['tb'].add_graph( torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) elif plots and ni == 10 and loggers['wandb']: wandb_logger.log({ 'Mosaics': [ loggers['wandb'].Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg') if x.exists() ] }) # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for loggers scheduler.step() # DDP process 0 or single-GPU if RANK in [-1, 0]: # mAP ema.update_attr(model, include=[ 'yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights' ]) final_epoch = epoch + 1 == epochs if not noval or final_epoch: # Calculate mAP wandb_logger.current_epoch = epoch + 1 results, maps, _ = val.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=ema.ema, single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, save_json=is_coco and final_epoch, verbose=nc < 50 and final_epoch, plots=plots and final_epoch, wandb_logger=wandb_logger, compute_loss=compute_loss) # Write with open(results_file, 'a') as f: f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss # Log tags = [ 'train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2' ] # params for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): if loggers['tb']: loggers['tb'].add_scalar(tag, x, epoch) # TensorBoard if loggers['wandb']: wandb_logger.log({tag: x}) # W&B # Update best mAP fi = fitness(np.array(results).reshape( 1, -1)) # weighted combination of [P, R, [email protected], [email protected]] if fi > best_fitness: best_fitness = fi wandb_logger.end_epoch(best_result=best_fitness == fi) # Save model if (not nosave) or (final_epoch and not evolve): # if save ckpt = { 'epoch': epoch, 'best_fitness': best_fitness, 'training_results': results_file.read_text(), 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None } # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if loggers['wandb']: if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1: wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi) del ckpt # end epoch ---------------------------------------------------------------------------------------------------- # end training ----------------------------------------------------------------------------------------------------- if RANK in [-1, 0]: LOGGER.info( f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n' ) if plots: plot_results(save_dir=save_dir) # save as results.png if loggers['wandb']: files = [ 'results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')] ] wandb_logger.log({ "Results": [ loggers['wandb'].Image(str(save_dir / f), caption=f) for f in files if (save_dir / f).exists() ] }) if not evolve: if is_coco: # COCO dataset for m in [last, best ] if best.exists() else [last]: # speed, mAP tests results, _, _ = val.run( data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=attempt_load(m, device).half(), single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, save_json=True, plots=False) # Strip optimizers for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if loggers['wandb']: # Log the stripped model loggers['wandb'].log_artifact( str(best if best.exists() else last), type='model', name='run_' + wandb_logger.wandb_run.id + '_model', aliases=['latest', 'best', 'stripped']) wandb_logger.finish_run() torch.cuda.empty_cache() return results
def mojo_test( data, weights=None, # model.pt path(s) batch_size=32, # batch size imgsz=640, # inference size (pixels) device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu save_txt=False, # save results to *.txt project="runs/val", # save to project/name name="exp", # save to project/name exist_ok=False, # existing project/name ok, do not increment entity=None, test_video_root=None, ): device = select_device(device, batch_size=batch_size) print(f"data:{data}") data_dict = check_dataset(data) print(f"data_dict:{data_dict}") # Trainloader images, labels = get_images_and_labels(data_dict["test"]) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / "labels" if save_txt else save_dir).mkdir( parents=True, exist_ok=True) # make dir run_id = torch.load(weights[0]).get("wandb_id") wandb_run = wandb.init( id=run_id, project=project, entity=entity, resume="allow", allow_val_change=True, ) results, maps, t, extra_stats = val.run( data, weights=weights, # model.pt path(s) batch_size=batch_size, # batch size imgsz=imgsz, # inference size (pixels) conf_thres=0.001, # confidence threshold iou_thres=0.6, # NMS IoU threshold task="test", # train, val, test, speed or study ) total_inference_time = np.sum(t) print(f"total_inference_time={total_inference_time:.1f}ms") wandb_run.log({f"mojo_test/test_metrics/mp": results[0]}) wandb_run.log({f"mojo_test/test_metrics/mr": results[1]}) wandb_run.log({f"mojo_test/test_metrics/map50": results[2]}) wandb_run.log({f"mojo_test/test_metrics/map": results[3]}) wandb_run.log( {f"mojo_test/test_metrics/inference_time": total_inference_time}) # Load model model = attempt_load(weights, map_location=device) # load FP32 model gs = max(int(model.stride.max()), 32) # grid size (max stride) imgsz = check_img_size(imgsz, s=gs) # check image size # Half half = device.type != "cpu" # half precision only supported on CUDA if half: model.half() def video_prediction_function(frame_array, iou_thres_nms=0.45, conf_thres_nms=0.001): n_frames = len(frame_array) preds = [] for i in range(0, n_frames, batch_size): frames = [] for frame in frame_array[i:min(i + batch_size, n_frames)]: from utils.datasets import letterbox img = letterbox(frame, new_shape=(imgsz, imgsz))[0] img = np.array([img, img, img]) img = np.ascontiguousarray(img) frames.append(img) frames = np.array(frames) # Convert img to torch img = torch.from_numpy(frames).to(device) img = (img.half() if device.type != "cpu" else img.float() ) # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference pred = model(img, augment=False)[0] # Apply NMS pred = non_max_suppression(pred, iou_thres=iou_thres_nms, conf_thres=conf_thres_nms) _ = [] for j, det in enumerate(pred): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], frame_array[i + j].shape) det = det.cpu().numpy() det[:, :4] = xyxy2xywhn( det[:, :4], w=frame_array[i + j].shape[1], h=frame_array[i + j].shape[0], ) _.append(det) preds += _ return preds workspace_plots, artifacts_plots = dict(), dict() preds_iou_thres = dict() for iout in [0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65]: preds_iou_thres[iout] = video_prediction_function(images, iou_thres_nms=iout) fig_line = plot_object_count_difference_line(labels, preds_iou_thres) fig, suggested_threshold = plot_object_count_difference_ridgeline( labels, preds_iou_thres[0.45]) print(f"suggested_threshold={suggested_threshold}") workspace_plots["object_count_difference"] = fig workspace_plots["object_count_difference_continuous"] = fig_line # Extract prediction & labels match from validation extra stats predn, preds_matched, labelsn, labels_matched, images_paths = compute_predictions_and_labels( extra_stats, threshold=suggested_threshold) static_plotly_dict, dynamic_wandb_list = plot_dynamic_and_static_preds( predn, preds_matched, labelsn, labels_matched, images_paths, threshold=suggested_threshold, names={ k: v for k, v in enumerate( model.names if hasattr(model, 'names') else model.module.names) }) artifacts_plots.update(static_plotly_dict) for plot_idx, plot in enumerate(dynamic_wandb_list): workspace_plots[ f"Targets and predictions/{images_paths[plot_idx].name}"] = [plot] # Compute TP, TN, FP, FN and draw crops of lowest and confidence threshold preds true_pos, true_neg, false_pos, false_neg = compute_predictions_and_labels_false_pos( predn, preds_matched, labelsn, labels_matched, images_paths, threshold=suggested_threshold) artifacts_plots.update( plot_predictions_and_labels_crops(true_pos, true_neg, false_pos, false_neg, images_paths)) for fig_name, fig in tqdm.tqdm(workspace_plots.items(), desc="Uploading workspace plots"): wandb_run.log({f"mojo_test/workspace_plots/{fig_name}": fig}) for fig_name, fig in tqdm.tqdm(artifacts_plots.items(), desc="Uploading artifacts plots"): log_plot_as_wandb_artifact(wandb_run, fig, fig_name) if test_video_root is not None: for video_path in Path(test_video_root).rglob("*.avi"): output_video_path, jitter_plot = make_video_results( video_path, lambda x: video_prediction_function(x, suggested_threshold)) wandb_run.log({ f"mojo_test/extra_videos/{output_video_path.name}": wandb.Video(str(output_video_path), fps=60, format="mp4") }) wandb_run.log({ f"mojo_test/workspace_plots/{output_video_path.name}_jitter": jitter_plot }) return None