def z_split_max_likely(tbdata):
    posvar = np.linspace(0, 2, 5000)
    ### Remove edges ###
    tbdata = vari_funcs.remove_edges(tbdata)

    ### Split by z ###
    tbhigh, tblow = z_split(tbdata)

    ### Get luminosity and flux ###
    tbhigh, highL, highfluxnorm, higherrnorm = get_luminosity_and_flux(tbhigh)
    tblow, lowL, lowfluxnorm, lowerrnorm = get_luminosity_and_flux(tblow)

    ### Get sig values ###
    numobs = np.shape(highfluxnorm)[0]
    meanflux = np.nanmean(highfluxnorm, axis=1)
    highout = np.array([
        vari_funcs.maximum_likelihood(highfluxnorm[n, :],
                                      higherrnorm[n, :],
                                      meanflux[n],
                                      posvar,
                                      n=n,
                                      printn=100) for n in range(numobs)
    ])

    numobs = np.shape(lowfluxnorm)[0]
    meanflux = np.nanmean(lowfluxnorm, axis=1)
    lowout = np.array([
        vari_funcs.maximum_likelihood(lowfluxnorm[n, :],
                                      lowerrnorm[n, :],
                                      meanflux[n],
                                      posvar,
                                      n=n,
                                      printn=100) for n in range(numobs)
    ])
    return highL, highout, lowL, lowout, tbdata
示例#2
0
def prep_data(tbdata):
    ### Remove edges ###
    tbdata = vari_funcs.remove_edges(tbdata)
    
    ## Create arrays of flux values ###
    flux = vari_funcs.flux4_stacks(tbdata)
    
    ### remove values that are negative ###
    flux, tbdata = vari_funcs.noneg(flux, tbdata)
    
    ### Get error arrays ###
    flux, fluxerr, tbdata = vari_funcs.create_quad_error_array(sigtb, tbdata, aper=4)
    
    return flux, fluxerr, tbdata
def run_max_likely(tbdata):
    posvar = np.linspace(0,2,5000)
    ### Remove edges ###
    tbdata = vari_funcs.remove_edges(tbdata)
    
    ### Get luminosity and flux ###
    tbdata, L, fluxnorm, fluxerrnorm= get_luminosity_and_flux(tbdata)
    
    ### Get sig values ###
    numobs = np.shape(fluxnorm)[0]
    meanflux = np.nanmean(fluxnorm, axis=1)
    out = np.array([vari_funcs.maximum_likelihood(fluxnorm[n,:], 
                                                  fluxerrnorm[n,:], meanflux[n], 
                                                  posvar, n=n, printn=100) for n in range(numobs)])
    return L, out, tbdata
示例#4
0
def run_max_likely(tbdata):
    posvar = np.linspace(0,2,5000)
    ### Remove edges ###
    tbdata = vari_funcs.remove_edges(tbdata)
    
    sigtb = Table.read('sigma_tables/quad_epoch_sigma_table_extra_clean_no06_2arcsec.fits')

    ### Extract magnitude table and error table ###
    flux = vari_funcs.flux4_stacks(tbdata)
    flux, tbdata = vari_funcs.noneg(flux, tbdata)
#    tbdata = tbdata[np.nanmean(flux,axis=1)>1e4]
    flux, fluxerr, tbdata = vari_funcs.create_quad_error_array(sigtb, tbdata, aper=4)
    
    ### Normalise ###
    fluxnorm, fluxerrnorm = vari_funcs.normalise_flux_and_errors(flux, fluxerr)
    
    ### Get sig values ###
    numobs = np.shape(fluxnorm)[0]
    meanflux = np.nanmean(fluxnorm, axis=1)
    out = np.array([vari_funcs.maximum_likelihood(fluxnorm[n,:], 
                                                  fluxerrnorm[n,:], meanflux[n], 
                                                  posvar, n=n, printn=100) for n in range(numobs)])
    return out, tbdata
示例#5
0
from scipy import stats
import vari_funcs  #my module to help run code neatly
#from scipy.stats import chisquare
#plt.close('all') #close any open plots

### Open the fits files and get data ###
tbdata = fits.open(
    'mag_flux_tables/mag_flux_table_best_extra_clean_no06.fits')[1].data
chandata = fits.open(
    'mag_flux_tables/xray_mag_flux_table_best_extra_clean_no06.fits')[1].data
sdata = fits.open(
    'mag_flux_tables/stars_mag_flux_table_extra_clean_no06.fits')[1].data
sigtb = Table.read('sigma_tables/quad_epoch_sigma_table_extra_clean_no06.fits')

### Remove edges ###
tbdata = vari_funcs.remove_edges(tbdata)
chandata = vari_funcs.remove_edges(chandata)
sdata = vari_funcs.remove_edges(sdata)

#### Limit to Chandra region ###
#tbdata = vari_funcs.chandra_only(tbdata)
#chandata = vari_funcs.chandra_only(chandata)
#sdata = vari_funcs.chandra_only(sdata)

## Create arrays of flux values ###
flux = vari_funcs.flux5_stacks(tbdata)
fluxchan = vari_funcs.flux5_stacks(chandata)
sflux = vari_funcs.flux5_stacks(sdata)

### remove values that are negative ###
flux, tbdata = vari_funcs.noneg(flux, tbdata)
    
    ### create ensemble arrays ###
    
    enflux, enfluxerr, enL = make_ensemble(tbdata, L, binedge,
                                                       fluxnorm, fluxerrnorm)
    
    ### Get ensemble maximum likelihood ###
    sig, sigerr, meanL = get_ensemble_sig(enflux, enfluxerr, enL, posvar)
    
    #### get errors ###
    xerr = find_err_values(binedge, sortedL, meanL)
    
    return tbdata, meanL, xerr, sig, sigerr
    
#%% remove edges and split by z ###
tbdata = vari_funcs.remove_edges(tbdata)
#fullxray = vari_funcs.remove_edges(fullxray)

tb1, tb2, tb3, tb4, tb5 = z_split(tbdata)
#fullhigh, fulllow = z_split(fullxray)

#%% run function ###
tb1, meanL1, xerr1, sig1, sigerr1 = get_ensemble_data(tb1)
tb2, meanL2, xerr2, sig2, sigerr2 = get_ensemble_data(tb2)
tb3, meanL3, xerr3, sig3, sigerr3 = get_ensemble_data(tb3)
tb4, meanL4, xerr4, sig4, sigerr4 = get_ensemble_data(tb4)
tb5, meanL5, xerr5, sig5, sigerr5 = get_ensemble_data(tb5)

#%% run plot ###
plt.figure(figsize=[12,7])
#plt.subplot(121)
示例#7
0
from astropy.io import fits #for handling fits
from astropy.table import Table #for handling tables
import numpy as np #for handling arrays
#import math
#from astropy.stats import median_absolute_deviation
import vari_funcs #my module to help run code neatly
plt.close('all')
plt.style.use('dark_background')

### Get fits files ###
chandata = fits.open('variable_tables/no06_variables_chi30_2arcsec_chandata_DR11data_restframe.fits')[1].data
xmmdata = fits.open('variable_tables/no06_variables_chi30_2arcsec_xmmdata_DR11data_restframe.fits')[1].data
tbdata = fits.open('variable_tables/no06_variables_chi30_2arcsec_DR11data_restframe.fits')[1].data

### Remove edges ###
tbdata = vari_funcs.remove_edges(tbdata)
chandata = vari_funcs.remove_edges(chandata)
xmmdata = vari_funcs.remove_edges(xmmdata)

nontb = tbdata[~tbdata['X-ray']]
#xtb = tbdata[tbdata['X-ray']]

### Get positions ###
nonRA = nontb['ALPHA_J2000']
nonDec = nontb['DELTA_J2000']
#xRA = xtb['ALPHA_J2000']
#xDec = xtb['DELTA_J2000']
chanRA = chandata['ALPHA_J2000']
chanDec = chandata['DELTA_J2000']
xmmRA = xmmdata['ALPHA_J2000']
xmmDec = xmmdata['DELTA_J2000']
示例#8
0
    return binedge
    
def combine_Xray(binedge, xmmenflux, xmmenfluxerr, xmmenL, 
                 chanenflux, chanenfluxerr, chanenL):
    enflux = {}
    enfluxerr = {}
    enL = {}
    for m, enmin in enumerate(binedge):
        enflux[m] = np.vstack([xmmenflux[m],chanenflux[m]])
        enfluxerr[m] = np.vstack([xmmenfluxerr[m],chanenfluxerr[m]])
        enL[m] = np.append(xmmenL[m],chanenL[m])
    return enflux, enfluxerr, enL

#%% remove edges ###
    
tbdata = vari_funcs.remove_edges(tbdata)
chandata = vari_funcs.remove_edges(chandata)
xmmdata = vari_funcs.remove_edges(xmmdata)
fullxray = vari_funcs.remove_edges(fullxray)

#%% get_luminosity_and_flux ###

tbdata, L, fluxnorm, fluxerrnorm= get_luminosity_and_flux(tbdata)
chandata, chanL, chanfluxnorm, chanerrnorm= get_luminosity_and_flux(chandata)
xmmdata, xmmL, xmmfluxnorm, xmmerrnorm = get_luminosity_and_flux(xmmdata, xmm=True)
fullxray, fullL, fullfluxnorm, fullerrnorm= get_luminosity_and_flux(fullxray)

#%% Split into bins according to nir luminosity ###

### Join xmm and chan arrays ###
xrayL = np.append(xmmL, chanL)