示例#1
0
class Thermalwind(Param):
    """ Thermal wind model

    It provides the step(t,dt) function
    and 'var' containing the mode state
    """
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'forcing_module',
            'additional_tracer', 'myrank', 'gravity', 'diffusion', 'Kdiff',
            'f0'
        ]
        param.copy(self, self.list_param)

        # for potential energy
        self.list_param = [
            'xr', 'yr', 'nh', 'Lx', 'msk', 'area', 'mpitools', 'dx'
        ]
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = [
            'vorticity', 'psi', 'u', 'v', 'buoyancy', 'V', 'qE'
        ]
        param.tracer_list = ['vorticity', 'buoyancy', 'V']
        param.whosetspsi = ('vorticity')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)

        if self.forcing:
            try:
                f = import_module(self.forcing_module)
            except:
                print('module %s for forcing cannot be found' %
                      self.forcing_module)
                print('make sure file **%s.py** exists' % self.forcing_module)
                exit(0)

            self.forc = f.Forcing(param, grid)

        self.diags = {}

    def step(self, t, dt):

        # 1/ integrate advection
        self.tscheme.set(self.dynamics, self.timestepping)
        self.tscheme.forward(self.var.state, t, dt)

        # 2/ integrate source
        if self.forcing or self.noslip:
            self.tscheme.set(self.sources, 'EF')
            self.tscheme.forward(self.var.state, t, dt)

        self.compute_pv()

    def compute_pv(self):
        qE = self.var.get('qE')
        v = self.var.get('V')
        b = self.var.get('buoyancy')

        # Ertel PV
        y = qE * 0.
        y[1:-1, 1:-1] = self.ope.jacobian(v + self.f0 * self.xr, b)
        y *= self.msk
        self.ope.fill_halo(y)
        qE[:, :] = y

    def dynamics(self, x, t, dxdt):
        self.ope.rhs_adv(x, t, dxdt)
        self.ope.rhs_thermalwind(x, t, dxdt)  # add the r.h.s. terms
        if (self.tscheme.kstage == self.tscheme.kforcing):
            if self.forcing:
                self.forc.add_forcing(x, t, dxdt)
            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt)

        self.ope.invert_vorticity(dxdt, flag='fast')

    def sources(self, x, t, dxdt):
        if self.noslip:
            self.ope.rhs_noslip(x, t, dxdt)
            self.ope.invert_vorticity(x, flag='full')

    def set_psi_from_vorticity(self):
        self.ope.invert_vorticity(self.var.state)

    def diagnostics(self, var, t):
        """ should provide at least 'maxspeed' (for cfl determination) """

        nh = self.nh
        u = var.get('u')
        v = var.get('v')
        vort = var.get('vorticity')
        buoy = var.get('buoyancy')
        V = var.get('V')
        qE = var.get('qE')
        qEneg = qE.copy()
        qEneg[qE > 0] = 0.

        ke, maxu = fd.computekemaxu(self.msk, u, v, self.nh)

        z, z2 = fd.computesumandnorm(self.msk, vort, self.nh)

        b, b2 = fd.computesumandnorm(self.msk, buoy, self.nh)

        vm, v2 = fd.computesumandnorm(self.msk, V, self.nh)

        q, q2 = fd.computesumandnorm(self.msk, qE, self.nh)
        qn, qn2 = fd.computesumandnorm(self.msk, qEneg, self.nh)

        # potential energy (minus sign because buoyancy is minus density)
        pe = fd.computesum(self.msk, buoy * self.yr, nh)
        pe = -self.gravity * pe

        cst = self.mpitools.local_to_global([(maxu, 'max'), (ke, 'sum'),
                                             (z, 'sum'), (z2, 'sum'),
                                             (pe, 'sum'), (b, 'sum'),
                                             (b2, 'sum'), (q, 'sum'),
                                             (q2, 'sum'), (qn, 'sum'),
                                             (qn2, 'sum'), (v2, 'sum')])

        a = self.area
        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = (cst[1]) / a
        self.diags['keV'] = (0.5 * cst[11]) / a
        self.diags['pe'] = cst[4] / a
        self.diags[
            'energy'] = self.diags['ke'] + self.diags['pe'] + self.diags['keV']

        self.diags['vorticity'] = cst[2] / a
        self.diags['enstrophy'] = 0.5 * cst[3] / a

        bm = cst[5] / a
        self.diags['buoyancy'] = bm
        self.diags['brms'] = sqrt(cst[6] / a - bm**2)

        pvm = cst[7] / a
        pvneg_mean = cst[9] / a
        self.diags['pv_mean'] = pvm
        self.diags['pv_std'] = sqrt(cst[8] / a - pvm**2)
        self.diags['pvneg_mean'] = pvneg_mean
        self.diags['pvneg_std'] = sqrt(cst[10] / a - pvneg_mean**2)
示例#2
0
class Euler(object):
    """ Euler model

    It provides the step(t,dt) function
    and 'var' containing the mode state
    """
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'diffusion', 'Kdiff',
            'forcing_module', 'additional_tracer', 'enforce_momentum',
            'var_to_save', 'customized', 'custom_module', 'spongelayer'
        ]
        param.copy(self, self.list_param)

        # for diagnostics
        self.list_param = [
            'yr', 'nh', 'msk', 'area', 'mpitools', 'dx', 'xr', 'yr', 'r2',
            'x0', 'y0', 'x2', 'y2', 'isisland', 'Lx', 'ny'
        ]
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = ['vorticity', 'psi', 'u', 'v',
                              'source']  # ,'tauw','wshear']
        param.tracer_list = ['vorticity']
        param.whosetspsi = ('vorticity')

        if 'tauw' in self.var_to_save:
            param.varname_list.append('tauw')

        if 'wshear' in self.var_to_save:
            param.varname_list.append('wshear')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        self.work = np.zeros(param.sizevar)

        # for timing the code
        self.timers = Timers(param)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.dynamics, self.timestepping)

        if self.forcing:
            if self.forcing_module == 'embedded':
                print(
                    'Warning: check that you have indeed added the forcing to the model'
                )
                print('Right below the line    : model = f2d.model')
                print(
                    'you should have the line: model.forc = Forcing(param, grid)'
                )

                pass
            else:
                try:
                    f = import_module(self.forcing_module)
                except ImportError:
                    print('module %s for forcing cannot be found' %
                          self.forcing_module)
                    print('make sure file **%s.py** exists' %
                          self.forcing_module)
                    exit(0)
                self.forc = f.Forcing(param, grid)

        if self.spongelayer:
            # sponge layer zone [0 = full sponge, 1 = no sponge]
            self.spongemsk = (1 - (1 + np.tanh(
                (self.xr - self.Lx) / 0.1)) * 0.5)

        self.diags = {}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                self.extrastep = f.Step(param, grid)
            except ImportError:
                print('module %s for forcing cannot be found' %
                      self.custom_module)
                print('make sure file **%s.py** exists' % self.custom_module)
                exit(0)

    def step(self, t, dt):

        # 1/ integrate dynamics
        self.tscheme.forward(self.var.state, t, dt)

        # 2/ integrate source
        if self.noslip:
            self.add_noslip(self.var.state)
            source = self.var.get('source')
            source /= dt
            if 'tauw' in self.var_to_save:
                tauw = self.var.get('tauw')
                tauw[:, :] = source * self.dx * self.dx

            if 'wshear' in self.var_to_save:
                wshear = self.var.get('wshear')
                self.ope.wallshear(self.var.state, self.work)
                wshear[:, :] = self.work

        if self.customized:
            self.extrastep.do(self.var, t, dt)

        # # 3/ dye tracer
        if 'dye' in self.var.varname_list:
            i, jp, jm = 1, self.ny // 2 + 3, self.ny // 2 - 3

            dye = self.var.get('dye')
            dye[jp + self.nh, i] = 1
            dye[jm + self.nh, i] = -1

        if 'age' in self.var.varname_list:
            age = self.var.get('age')
            age += dt * self.msk
            age[:, self.nh] = 0.

        if self.spongelayer:
            # 4/ sponge layer
            w = self.var.get('vorticity')
            w *= self.spongemsk
            if 'dye' in self.var.varname_list:
                dye *= self.spongemsk
            if 'age' in self.var.varname_list:
                age *= self.spongemsk

        #self.set_psi_from_vorticity()

    def dynamics(self, x, t, dxdt):
        """Compute the tendency terms + invert the streamfunction"""

        self.timers.tic('rhs_adv')
        self.ope.rhs_adv(x, t, dxdt)
        self.timers.toc('rhs_adv')

        if (self.tscheme.kstage == self.tscheme.kforcing):
            if self.forcing:
                self.forc.add_forcing(x, t, dxdt)

            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt)

                #        else:
        self.timers.tic('invert')
        self.ope.invert_vorticity(dxdt, flag='fast')
        self.timers.toc('invert')

    def add_noslip(self, x):
        self.timers.tic('noslip')
        source = self.var.get('source')
        self.ope.rhs_noslip(x, source)
        self.timers.toc('noslip')

        # if not(self.enforce_momentum):
        self.timers.tic('invert')
        self.ope.invert_vorticity(x, flag='fast', island=self.isisland)
        self.timers.toc('invert')

    def set_psi_from_vorticity(self):
        self.ope.invert_vorticity(self.var.state, island=self.isisland)

    def diagnostics(self, var, t):
        """ should provide at least 'maxspeed' (for cfl determination) """
        self.timers.tic('diag')
        u = var.get('u')
        v = var.get('v')
        trac = var.get('vorticity')
        psi = var.get('psi')
        source = self.var.get('source')

        xr = self.xr
        yr = self.yr

        ke, maxu = fd.computekemaxu(self.msk, u, v, self.nh)
        # ke = fd.computekewithpsi(self.msk, trac, psi, self.nh)

        z, z2 = fd.computesumandnorm(self.msk, trac, self.nh)

        px = fd.computedotprod(self.msk, trac, xr, self.nh)
        py = fd.computedotprod(self.msk, trac, yr, self.nh)

        angmom = fd.computesum(self.msk, psi, self.nh)
        sce = fd.computedotprod(self.msk, trac, source, self.nh)

        cst = self.mpitools.local_to_global([(maxu, 'max'), (ke, 'sum'),
                                             (z, 'sum'), (z2, 'sum'),
                                             (px, 'sum'), (py, 'sum'),
                                             (angmom, 'sum'), (sce, 'sum')])

        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = cst[1] / self.area
        self.diags['vorticity'] = cst[2] / self.area
        self.diags['enstrophy'] = 0.5 * cst[3] / self.area
        self.diags['px'] = cst[4] / self.area
        self.diags['py'] = cst[5] / self.area
        self.diags['angmom'] = cst[6] / self.area
        self.diags['source'] = cst[7] / self.area

        self.timers.toc('diag')
示例#3
0
class Boussinesq(object):
    """ Boussinesq model

    It provides the step(t,dt) function
    and 'var' containing the mode state
    """
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'diffusion', 'Kdiff',
            'myrank', 'forcing_module', 'gravity', 'isisland', 'customized',
            'custom_module', 'additional_tracer'
        ]
        param.copy(self, self.list_param)

        # for potential energy
        self.list_param = ['xr', 'yr', 'nh', 'Lx', 'msk', 'area', 'mpitools']
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = [
            'vorticity', 'psi', 'u', 'v', 'buoyancy', 'banom'
        ]
        param.tracer_list = ['vorticity', 'buoyancy']
        param.whosetspsi = ('vorticity')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        bref = self.var.get('buoyancy').copy()
        self.bref = bref
        self.source = np.zeros(param.sizevar)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.dynamics, self.timestepping)

        if self.forcing:
            if self.forcing_module == 'embedded':
                self.msg_forcing = (
                    'To make Fluid2d aware of your embedded forcing\n' +
                    'you need to add in the user script \n' +
                    'model.forc = Forcing(param, grid)\n' +
                    'right below the line: model = f2d.model')

                pass
            else:
                try:
                    f = import_module(self.forcing_module)
                except ImportError:
                    print('module %s for forcing cannot be found' %
                          self.forcing_module)
                    print('make sure file **%s.py** exists' %
                          self.forcing_module)
                    exit(0)
                self.forc = f.Forcing(param, grid)

        self.diags = {}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                print(f)
                self.extrastep = f.Step(param, grid)
            except ImportError:
                print('module %s for forcing cannot be found' %
                      self.custom_module)
                print('make sure file **%s.py** exists' % self.custom_module)
                exit(0)

    def step(self, t, dt):

        # 1/ integrate advection
        self.tscheme.forward(self.var.state, t, dt)

        # 2/ integrate source
        if self.noslip:
            self.add_noslip(self.var.state)

        if self.customized:
            self.extrastep.do(self.var, t, dt)

        banom = self.var.get('banom')
        banom[:, :] = self.var.get('buoyancy') - self.bref

    def dynamics(self, x, t, dxdt):
        self.ope.rhs_adv(x, t, dxdt)
        # db/dx is a source term for the vorticity
        self.ope.rhs_torque(x, t, dxdt)
        if (self.tscheme.kstage == self.tscheme.kforcing):
            coef = self.tscheme.dtcoef
            if self.forcing:
                assert hasattr(self, 'forc'), self.msg_forcing
                self.forc.add_forcing(x, t, dxdt, coef=coef)
            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt, coef=coef)

        self.ope.invert_vorticity(dxdt, flag='fast')

    def add_noslip(self, x):
        self.ope.rhs_noslip(x, self.source)
        self.ope.invert_vorticity(x, flag='fast', island=self.isisland)

    def set_psi_from_vorticity(self):
        self.ope.invert_vorticity(self.var.state, island=self.isisland)

    def diagnostics(self, var, t):
        """ should provide at least 'maxspeed' (for cfl determination) """

        nh = self.nh
        u = var.get('u')
        v = var.get('v')
        vort = var.get('vorticity')
        buoy = var.get('buoyancy')

        ke, maxu = fd.computekemaxu(self.msk, u, v, self.nh)

        z, z2 = fd.computesumandnorm(self.msk, vort, self.nh)

        b, b2 = fd.computesumandnorm(self.msk, buoy, self.nh)

        #  potential energy (minus sign because buoyancy is minus density)
        pe = -self.gravity * fd.computesum(self.msk, buoy * self.yr, nh)

        cst = self.mpitools.local_to_global([(maxu, 'max'), (ke, 'sum'),
                                             (z, 'sum'), (z2, 'sum'),
                                             (pe, 'sum'), (b, 'sum'),
                                             (b2, 'sum')])

        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = cst[1] / self.area
        self.diags['pe'] = cst[4] / self.area
        self.diags['energy'] = (cst[1] + cst[4]) / self.area
        self.diags['vorticity'] = cst[2] / self.area
        self.diags['enstrophy'] = 0.5 * cst[3] / self.area
        self.diags['buoyancy'] = cst[5] / self.area
        self.diags['brms'] = np.sqrt(cst[6] / self.area -
                                     (cst[5] / self.area)**2)
示例#4
0
class Euler(Param):
    """ Euler model 

    It provides the step(t,dt) function
    and 'var' containing the mode state
    """
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'diffusion', 'Kdiff',
            'forcing_module', 'additional_tracer', 'enforce_momentum',
            'var_to_save', 'customized', 'custom_module'
        ]
        param.copy(self, self.list_param)

        # for diagnostics
        self.list_param = [
            'yr', 'nh', 'msk', 'area', 'mpitools', 'dx', 'xr', 'yr', 'r2',
            'x0', 'y0', 'x2', 'y2', 'isisland', 'Lx'
        ]
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = ['vorticity', 'psi', 'u', 'v']  #,'tauw','wshear']
        param.tracer_list = ['vorticity']
        param.whosetspsi = ('vorticity')

        if 'tauw' in self.var_to_save:
            param.varname_list.append('tauw')

        if 'wshear' in self.var_to_save:
            param.varname_list.append('wshear')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)
                print('Tracers are :', param.tracer_list)

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        self.source = zeros(param.sizevar)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.advection, self.timestepping)

        if self.forcing:

            try:
                f = import_module(self.forcing_module)
            except:
                print('module %s for forcing cannot be found' %
                      self.forcing_module)
                print('make sure file **%s.py** exists' % self.forcing_module)
                exit(0)

            self.forc = f.Forcing(param, grid)

        self.diags = {}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                self.extrastep = f.step(param, grid)
            except:
                print('module %s for forcing cannot be found' %
                      self.custom_module)
                print('make sure file **%s.py** exists' % self.custom_module)
                exit(0)

    def step(self, t, dt):

        # 1/ integrate advection
        self.tscheme.forward(self.var.state, t, dt)

        # 2/ integrate source
        if self.noslip:
            self.add_noslip(self.var.state)

            if 'tauw' in self.var_to_save:
                tauw = self.var.get('tauw')
                tauw[:, :] = self.source / dt * self.dx * self.dx

            if 'wshear' in self.var_to_save:
                wshear = self.var.get('wshear')
                self.ope.wallshear(self.var.state, self.source)
                wshear[:, :] = self.source

        if self.customized:
            self.extrastep.do(self.var, t, dt)

        # # 3/ dye tracer
        # i,jp,jm=1,67,61

        # dye = self.var.get('dye')
        # dye[jp+self.nh,i]=1
        # dye[jm+self.nh,i]=-1

        # age = self.var.get('age')
        # age += dt*self.msk
        # age[:,self.nh]=0.

        # # 4/ sponge layer
        # damping = ( 1- (1+tanh( (self.xr - self.Lx)/0.1))*0.5)
        # w = self.var.get('vorticity')
        # w *= damping
        # dye *= damping
        # age *= damping

    def advection(self, x, t, dxdt):
        self.ope.rhs_adv(x, t, dxdt)
        if (self.tscheme.kstage == self.tscheme.kforcing):
            if self.forcing:
                self.forc.add_forcing(x, t, dxdt)
            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt)

        self.ope.invert_vorticity(dxdt, flag='fast')

    def add_noslip(self, x):
        self.ope.rhs_noslip(x, self.source)
        if not (self.enforce_momentum):
            self.ope.invert_vorticity(x, flag='fast', island=self.isisland)

    def set_psi_from_vorticity(self):
        self.ope.invert_vorticity(self.var.state, island=self.isisland)

    def diagnostics(self, var, t):
        """ should provide at least 'maxspeed' (for cfl determination) """

        nh = self.nh
        u = var.get('u')
        v = var.get('v')
        trac = var.get('vorticity')

        xr = self.xr
        yr = self.yr
        r2 = self.r2

        ke, maxu = computekemaxu(self.msk, u, v, self.nh)

        z, z2 = computesumandnorm(self.msk, trac, self.nh)

        px = computedotprod(self.msk, trac, xr, self.nh)
        py = computedotprod(self.msk, trac, yr, self.nh)
        angmom = computedotprod(self.msk, trac, r2, self.nh)

        cst = self.mpitools.local_to_global([(maxu, 'max'), (ke, 'sum'),
                                             (z, 'sum'), (z2, 'sum'),
                                             (px, 'sum'), (py, 'sum'),
                                             (angmom, 'sum')])

        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = cst[1] / self.area
        self.diags['vorticity'] = cst[2] / self.area
        self.diags['enstrophy'] = cst[3] / self.area
        self.diags['px'] = cst[4] / self.area
        self.diags['py'] = cst[5] / self.area
        self.diags['angmom'] = cst[6] / self.area
示例#5
0
class BoussinesqTS(object):
    """ Boussinesq model with temperature and salinity

    It provides the step(t,dt) function
    and 'var' containing the mode state
    """
    def __init__(self, param, grid):

        self.list_param = [
            'forcing', 'noslip', 'timestepping', 'alphaT', 'betaS',
            'diffusion', 'Kdiff', 'myrank', 'forcing_module', 'gravity',
            'isisland', 'customized', 'custom_module', 'additional_tracer'
        ]
        param.copy(self, self.list_param)

        # for potential energy
        self.list_param = ['xr', 'yr', 'nh', 'Lx', 'msk', 'area', 'mpitools']
        grid.copy(self, self.list_param)

        # for variables
        param.varname_list = [
            'vorticity', 'psi', 'u', 'v', 'density', 'danom', 'T', 'S'
        ]
        param.tracer_list = ['vorticity', 'T', 'S']
        param.whosetspsi = ('vorticity')

        if hasattr(self, 'additional_tracer'):
            for k in range(len(self.additional_tracer)):
                trac = self.additional_tracer[k]
                param.varname_list.append(trac)
                param.tracer_list.append(trac)

        self.varname_list = param.varname_list

        param.sizevar = [grid.nyl, grid.nxl]
        self.var = Var(param)
        dref = self.var.get('density').copy()
        self.dref = dref
        self.source = np.zeros(param.sizevar)

        # for operators
        self.ope = Operators(param, grid)

        # for timescheme
        self.tscheme = Timescheme(param, self.var.state)
        self.tscheme.set(self.dynamics, self.timestepping)

        if self.forcing:
            if self.forcing_module == 'embedded':
                print(
                    'Warning: check that you have indeed added the forcing to the model'
                )
                print('Right below the line    : model = f2d.model')
                print(
                    'you should have the line: model.forc = Forcing(param, grid)'
                )

                pass
            else:
                try:
                    f = import_module(self.forcing_module)

                except ImportError:
                    print('module %s for forcing cannot be found' %
                          self.forcing_module)
                    print('make sure file **%s.py** exists' %
                          self.forcing_module)
                    sys.exit(0)

                self.forc = f.Forcing(param, grid)

        self.diags = {}

        if self.customized:
            try:
                f = import_module(self.custom_module)
                print(f)
                self.extrastep = f.Step(param, grid)
            except ImportError:
                print('module %s for forcing cannot be found' %
                      self.custom_module)
                print('make sure file **%s.py** exists' % self.custom_module)
                exit(0)

    def step(self, t, dt):

        # 1/ integrate advection
        self.tscheme.forward(self.var.state, t, dt)
        self.set_density()

        # 2/ integrate source
        if self.noslip:
            self.add_noslip(self.var.state)

        if self.customized:
            self.extrastep.do(self.var, t, dt)

        danom = self.var.get('danom')
        danom[:, :] = self.var.get('density') - self.dref

    def dynamics(self, x, t, dxdt):
        self.ope.rhs_adv(x, t, dxdt)
        self.eos(dxdt)
        # db/dx is a source term for the vorticity
        self.ope.rhs_torque_density(x, t, dxdt)
        if (self.tscheme.kstage == self.tscheme.kforcing):
            coef = self.tscheme.dtcoef
            if self.forcing:
                self.forc.add_forcing(x, t, dxdt, coef=coef)
            if self.diffusion:
                self.ope.rhs_diffusion(x, t, dxdt, coef=coef)
        self.eos(dxdt)
        self.ope.invert_vorticity(dxdt, flag='fast')

    def add_noslip(self, x):
        self.ope.rhs_noslip(x, self.source)
        self.ope.invert_vorticity(x, flag='fast', island=self.isisland)

    def eos(self, x):
        """ compute density from T and S """
        idens = self.varname_list.index('density')
        itemp = self.varname_list.index('T')
        isalt = self.varname_list.index('S')

        x[idens] = -self.alphaT * x[itemp] + self.betaS * x[isalt]

    def set_density(self):
        self.eos(self.var.state)

    def set_psi_from_vorticity(self):
        self.ope.invert_vorticity(self.var.state, island=self.isisland)

    def diagnostics(self, var, t):
        """ should provide at least 'maxspeed' (for cfl determination) """

        nh = self.nh
        u = var.get('u')
        v = var.get('v')
        vort = var.get('vorticity')
        dens = var.get('density')

        ke, maxu = fd.computekemaxu(self.msk, u, v, self.nh)

        z, z2 = fd.computesumandnorm(self.msk, vort, self.nh)

        b, b2 = fd.computesumandnorm(self.msk, dens, self.nh)

        #  potential energy
        pe = +self.gravity * fd.computesum(self.msk, dens * self.yr, nh)

        cst = self.mpitools.local_to_global([(maxu, 'max'), (ke, 'sum'),
                                             (z, 'sum'), (z2, 'sum'),
                                             (pe, 'sum'), (b, 'sum'),
                                             (b2, 'sum')])

        self.diags['maxspeed'] = cst[0]
        self.diags['ke'] = cst[1] / self.area
        self.diags['pe'] = cst[4] / self.area
        self.diags['energy'] = (cst[1] + cst[4]) / self.area
        self.diags['vorticity'] = cst[2] / self.area
        self.diags['enstrophy'] = 0.5 * cst[3] / self.area
        self.diags['density'] = cst[5] / self.area
        self.diags['drms'] = np.sqrt(cst[6] / self.area -
                                     (cst[5] / self.area)**2)