示例#1
0
    def test_optimised_test_pattern(self):
        ts = OTPS(
            target=(1, 2),
            pattern=TP({
                (3, 4): +1,
                (5, 6): -1,
            }),
            pattern_translation_multiple=(7, 8),
            target_translation_multiple=(9, 10),
            quantisation_index=11,
            decoded_value=12,
            num_search_iterations=13,
        )

        its = invert_test_pattern_specification(ts)

        assert its == OTPS(
            target=(1, 2),
            pattern=TP({
                (3, 4): -1,
                (5, 6): +1,
            }),
            pattern_translation_multiple=(7, 8),
            target_translation_multiple=(9, 10),
            quantisation_index=11,
            decoded_value=12,
            num_search_iterations=13,
        )
def test_serialise_test_pattern_specifications():
    before = OrderedDict([
        ((1, "LH", 2, 3), OTPS(
            target=(4, 5),
            pattern=TP({(10, 20): 1}),
            pattern_translation_multiple=(6, 7),
            target_translation_multiple=(8, 9),
            quantisation_index=30,
            decoded_value=40,
            num_search_iterations=50,
        )),
        ((2, "HL", 3, 2), OTPS(
            target=(1, 0),
            pattern=TP({(10, 20): 1}),
            pattern_translation_multiple=(6, 7),
            target_translation_multiple=(8, 9),
            quantisation_index=30,
            decoded_value=40,
            num_search_iterations=50,
        )),
    ])
    after = serialise_test_pattern_specifications(OTPS, before)
    after = json_roundtrip(after)
    
    assert after == [
        {
            "level": 1,
            "array_name": "LH",
            "phase": [2, 3],
            "target": [4, 5],
            "pattern": serialise_test_pattern(TP({(10, 20): 1})),
            "pattern_translation_multiple": [6, 7],
            "target_translation_multiple": [8, 9],
            "quantisation_index": 30,
            "decoded_value": 40,
            "num_search_iterations": 50,
        },
        {
            "level": 2,
            "array_name": "HL",
            "phase": [3, 2],
            "target": [1, 0],
            "pattern": serialise_test_pattern(TP({(10, 20): 1})),
            "pattern_translation_multiple": [6, 7],
            "target_translation_multiple": [8, 9],
            "quantisation_index": 30,
            "decoded_value": 40,
            "num_search_iterations": 50,
        },
    ]
    
    assert deserialise_test_pattern_specifications(OTPS, after) == before
示例#3
0
 def test_normalise_dict(self):
     t = TP({
         (-5, 50): +1,
         (10, -1): 0,
     })
     assert t.origin == (50, -5)
     assert t.polarities.shape == (1, 1)
示例#4
0
 def test_len(self):
     t = TP({
         (-5, 50): +1,
         (10, -1): -1,
         (0, 0): 0,
     })
     assert len(t) == 2
示例#5
0
    def test_offset_picture(self):
        test_patterns = OrderedDict([
            (
                (1, "Output", 0, 0),
                TPS(
                    pattern=TP({
                        (2, 1): +1,
                        (1, 2): -1,
                    }),
                    pattern_translation_multiple=(4, 4),
                    target=(1, 1),
                    target_translation_multiple=(1, 1),
                ),
            ),
        ])

        width, height = 20, 10

        pictures, locations = pack_test_patterns(width, height, test_patterns)

        assert len(pictures) == 1
        assert list(locations) == list(test_patterns)

        # Should have been assigned to the top-left most point possible
        exp_picture = np.zeros((height, width), dtype=np.int8)
        exp_picture[1, 2] = +1
        exp_picture[2, 1] = -1
        assert np.array_equal(pictures[0], exp_picture)

        assert locations[(1, "Output", 0, 0)] == (0, 1, 1)
    def test_conversion_to_array(self):
        test_pattern, search_slice = convert_test_pattern_to_padded_picture_and_slice(
            # NB: Coordinates are (x, y) here
            test_pattern=TP({
                (2, 3): +1,
                (4, 5): -1,
            }),
            input_min=-512,
            input_max=511,
            dwt_depth=3,
            dwt_depth_ho=0,
        )

        assert np.array_equal(
            test_pattern,
            np.array([
                [0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 511, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, -512, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 0, 0],
            ]))

        # NB: Coordinates are (y, x) here!
        assert search_slice == (slice(3, 6), slice(2, 5))
def test_serialise_picture():
    before = TP({
        (10, 20): +1, (11, 20): -1, (12, 20): +1, (13, 20): -1, (14, 20): +1,
        (10, 21): +1,               (12, 21): -1,               (14, 21): +1,
        (10, 22): +1,                                           (14, 22): -1,
    })
    
    after = serialise_test_pattern(before)
    
    assert after["dx"] == 10
    assert after["dy"] == 20
    assert after["width"] == 5
    assert after["height"] == 3
    
    # positive array:   mask array
    #     10101           11111
    #     1x0x1           10101
    #     1xxx0           10001
    
    # Packed positive array: 1010110001100000________
    #                        '----''----''----''----'
    #                 Decimal  43     6     0
    #                 Base64    r     G     A     =
    assert after["positive"] == "rGA="
    
    # Packed mask array: 1111110101100010________
    #                    '----''----''----''----'
    #             Decimal  63    22     8
    #             Base64    /     W     I     =
    assert after["mask"] == "/WI="
    
    after = json_roundtrip(after)
    
    assert deserialise_test_pattern(after) == before
示例#8
0
    def test_eq(self):
        t1 = TP({
            (0, 0): +1,
            (1, 0): -1,
        })
        t2 = TP({
            (0, 0): +1,
            (1, 0): -1,
        })
        t3 = TP({
            (1, 1): +1,
            (2, 1): -1,
        })

        assert t1 == t2
        assert t1 != (-t2)
        assert t1 != t3
示例#9
0
    def test_simple_packing(self):
        test_patterns = OrderedDict([
            (
                (1, "Output", 0, 0),
                TPS(
                    pattern=TP({
                        (2, 1): +1,
                        (1, 2): -1,
                    }),
                    pattern_translation_multiple=(4, 4),
                    target=(1, 1),
                    target_translation_multiple=(1, 1),
                ),
            ),
            (
                (1, "Output", 0, 1),
                TPS(
                    pattern=TP({
                        (2, 1): +1,
                        (1, 2): +1,
                    }),
                    pattern_translation_multiple=(4, 4),
                    target=(1, 1),
                    target_translation_multiple=(1, 1),
                ),
            ),
        ])

        width, height = 20, 10

        pictures, locations = pack_test_patterns(width, height, test_patterns)

        assert len(pictures) == 1
        assert list(locations) == list(test_patterns)

        exp_picture = np.zeros((height, width), dtype=np.int8)
        # First pattern, top left
        exp_picture[1, 2] = +1
        exp_picture[2, 1] = -1
        # Second pattern, just underneath
        exp_picture[5, 2] = +1
        exp_picture[6, 1] = +1
        assert np.array_equal(pictures[0], exp_picture)

        assert locations[(1, "Output", 0, 0)] == (0, 1, 1)
        assert locations[(1, "Output", 0, 1)] == (0, 1, 2)
示例#10
0
 def test_from_dict(self):
     t = TP({
         (-5, 50): +1,
         (10, -1): -1,
     })
     assert t.origin == (-1, -5)
     assert t.polarities.shape == (52, 16)
     assert t.polarities[51, 0] == +1
     assert t.polarities[0, 15] == -1
示例#11
0
 def test_from_origin_and_polarities(self):
     polarities = np.array([
         [0, 0, 0, -1],
         [1, 0, 0, 0],
     ])
     t = TP((-1, -5), polarities)
     assert t.origin == (-1, -5)
     assert t.polarities.dtype == np.int8
     assert np.array_equal(t.polarities, polarities)
示例#12
0
 def test_as_dict(self):
     t = TP({
         (-5, 50): +1,
         (10, -1): -1,
     })
     assert t.as_dict() == {
         (-5, 50): +1,
         (10, -1): -1,
     }
示例#13
0
 def test_normalise_origin_and_polarities(self):
     polarities = np.array([
         [0, 0, 0, 0],
         [0, 0, 1, -1],
         [0, 0, 0, 0],
     ])
     t = TP((-1, -5), polarities)
     assert t.origin == (0, -3)
     assert t.polarities.shape == (1, 2)
     assert np.array_equal(t.polarities, [[1, -1]])
    def test_rounding_up_sizes(self, dwt_depth, dwt_depth_ho, exp_shape):
        test_pattern, search_slice = convert_test_pattern_to_padded_picture_and_slice(
            # NB: Coordinates are (x, y) here
            test_pattern=TP({
                (6, 6): +1,
            }),
            input_min=-512,
            input_max=511,
            dwt_depth=dwt_depth,
            dwt_depth_ho=dwt_depth_ho,
        )

        assert test_pattern.shape == exp_shape
示例#15
0
    def test_test_pattern(self):
        ts = TPS(
            target=(1, 2),
            pattern=TP({
                (3, 4): +1,
                (5, 6): -1,
            }),
            pattern_translation_multiple=(7, 8),
            target_translation_multiple=(9, 10),
        )

        its = invert_test_pattern_specification(ts)

        assert its == TPS(
            target=(1, 2),
            pattern=TP({
                (3, 4): -1,
                (5, 6): +1,
            }),
            pattern_translation_multiple=(7, 8),
            target_translation_multiple=(9, 10),
        )
示例#16
0
    def test_as_picture_and_slice(self):
        p, s = TP({
            (1, 2): +1,
            (3, 4): -1,
        }).as_picture_and_slice()
        assert np.array_equal(p, [
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, -1],
        ])

        assert np.array_equal(p[s], [
            [1, 0, 0],
            [0, 0, 0],
            [0, 0, -1],
        ])
    def test_terminate_early(
        self,
        synthesis_intermediate_pyexps,
        filter_params,
    ):
        input_min = -512
        input_max = 511

        ts = TPS(
            target=(0, 0),
            pattern=TP({(0, 0): -1}),
            pattern_translation_multiple=(0, 0),
            target_translation_multiple=(0, 0),
        )

        synthesis_pyexp = Argument("coeffs")[0]["LL"][0, 0]

        kwargs = {
            "h_filter_params": filter_params,
            "v_filter_params": filter_params,
            "dwt_depth": 0,
            "dwt_depth_ho": 0,
            "quantisation_matrix": {
                0: {
                    "LL": 0
                }
            },
            "synthesis_pyexp": synthesis_pyexp,
            "test_pattern_specification": ts,
            "input_min": input_min,
            "input_max": input_max,
            "max_quantisation_index": 1,
            "random_state": np.random.RandomState(1),
            "base_iterations": 100,
            "added_corruptions_per_iteration": 1,
            "removed_corruptions_per_iteration": 0,
            "added_iterations_per_improvement": 50,
            "number_of_searches": 10,
        }

        # Check that with terminate early disabled the search runs the full
        # base set of iterations but finds no improvement
        new_ts = optimise_synthesis_maximising_test_pattern(
            terminate_early=None, **kwargs)
        assert new_ts.pattern == ts.pattern
        assert new_ts.num_search_iterations == 100 * 10

        # Check terminate early allows early termination after the specified
        # number of iterations
        new_ts = optimise_synthesis_maximising_test_pattern(terminate_early=3,
                                                            **kwargs)
        assert new_ts.pattern == ts.pattern
        assert new_ts.num_search_iterations == 100 * 3

        # Should run all iterations if an improvement is found
        kwargs["test_pattern_specification"] = TPS(
            target=(0, 0),
            pattern=TP({(0, 0): +1}),
            pattern_translation_multiple=(0, 0),
            target_translation_multiple=(0, 0),
        )
        new_ts = optimise_synthesis_maximising_test_pattern(terminate_early=3,
                                                            **kwargs)
        assert new_ts.num_search_iterations >= 100 * 10
示例#18
0
    def test_target_translation(self):
        # The test patterns should be allocated like so:
        #
        #     +--+----+-----+
        #     |0 | 1  |     |
        #     +--+    |     |
        #     |  +----+-+---+
        #     |  | 2    |   |
        #     |  |      |   |
        #     +--+------+---+
        #
        test_patterns = OrderedDict([
            (
                (1, "Output", 0, 0),
                TPS(
                    pattern=TP({
                        (2, 1): +1,
                        (1, 2): -1,
                    }),
                    pattern_translation_multiple=(4, 4),
                    target=(1, 1),
                    target_translation_multiple=(1, 1),
                ),
            ),
            (
                (1, "Output", 0, 1),
                TPS(
                    pattern=TP({
                        (10, 1): +1,
                        (1, 5): +1,
                    }),
                    pattern_translation_multiple=(4, 4),
                    target=(1, 1),
                    target_translation_multiple=(1, 1),
                ),
            ),
            (
                (1, "Output", 0, 2),
                TPS(
                    pattern=TP({
                        (5, 1): -1,
                        (1, 5): -1,
                    }),
                    pattern_translation_multiple=(4, 4),
                    target=(2, 3),
                    target_translation_multiple=(4, 5),
                ),
            ),
        ])

        width, height = 20, 15

        pictures, locations = pack_test_patterns(width, height, test_patterns)

        assert len(pictures) == 1
        assert list(locations) == list(test_patterns)

        exp_picture = np.zeros((height, width), dtype=np.int8)
        # First pattern, top left
        exp_picture[1, 2] = +1
        exp_picture[2, 1] = -1
        # Second pattern, just to the right
        exp_picture[1, 14] = +1
        exp_picture[5, 5] = +1
        # Third pattern, below-right of both
        exp_picture[13, 5] = -1
        exp_picture[9, 9] = -1
        assert np.array_equal(pictures[0], exp_picture)

        assert locations[(1, "Output", 0, 0)] == (0, 1, 1)
        assert locations[(1, "Output", 0, 1)] == (0, 2, 1)
        assert locations[(1, "Output", 0, 2)] == (0, 2 + 4, 3 + (2 * 5))
示例#19
0
 def test_as_picture_and_slice_invalid(self):
     with pytest.raises(ValueError):
         TP({(-1, 0): +1}).as_picture_and_slice()
     with pytest.raises(ValueError):
         TP({(0, -1): +1}).as_picture_and_slice()
示例#20
0
 def test_as_picture_and_slice_empty(self):
     p, s = TP({}).as_picture_and_slice()
     assert p.shape == (0, 0)
     assert p[s].shape == (0, 0)
示例#21
0
    def test_overspill_pictures(self):
        # Tests that allocation can overspill onto extra pictures and that
        # later allocations can be inserted onto any available picture.
        #
        #     +------+------+   +-------------+
        #     |      |      |   |      1      |
        #     |  0   |  2   |   +-------------+
        #     |      |      |   |      3      |
        #     +------+------+   +-------------+
        #
        test_patterns = OrderedDict([
            (
                (1, "Output", 0, 0),
                TPS(
                    pattern=TP({
                        (9, 0): -1,
                        (0, 9): -1,
                    }),
                    pattern_translation_multiple=(1, 1),
                    target=(1, 1),
                    target_translation_multiple=(1, 1),
                ),
            ),
            (
                (1, "Output", 0, 1),
                TPS(
                    pattern=TP({
                        (19, 0): +1,
                        (0, 4): -1,
                    }),
                    pattern_translation_multiple=(1, 1),
                    target=(1, 1),
                    target_translation_multiple=(1, 1),
                ),
            ),
            (
                (1, "Output", 0, 2),
                TPS(
                    pattern=TP({
                        (9, 0): +1,
                        (0, 9): +1,
                    }),
                    pattern_translation_multiple=(1, 1),
                    target=(1, 1),
                    target_translation_multiple=(1, 1),
                ),
            ),
            (
                (1, "Output", 0, 3),
                TPS(
                    pattern=TP({
                        (19, 0): -1,
                        (0, 4): +1,
                    }),
                    pattern_translation_multiple=(1, 1),
                    target=(1, 1),
                    target_translation_multiple=(1, 1),
                ),
            ),
        ])

        width, height = 20, 10

        pictures, locations = pack_test_patterns(width, height, test_patterns)

        assert len(pictures) == 2
        assert list(locations) == list(test_patterns)

        exp_picture_0 = np.zeros((height, width), dtype=np.int8)
        exp_picture_1 = np.zeros((height, width), dtype=np.int8)
        # Pattern 0
        exp_picture_0[0, 9] = -1
        exp_picture_0[9, 0] = -1
        # Pattern 1
        exp_picture_1[0, 19] = +1
        exp_picture_1[4, 0] = -1
        # Pattern 2
        exp_picture_0[0, 19] = +1
        exp_picture_0[9, 10] = +1
        # Pattern 3
        exp_picture_1[5, 19] = -1
        exp_picture_1[9, 0] = +1
        assert np.array_equal(pictures[0], exp_picture_0)
        assert np.array_equal(pictures[1], exp_picture_1)

        assert locations[(1, "Output", 0, 0)] == (0, 1, 1)
        assert locations[(1, "Output", 0, 1)] == (1, 1, 1)
        assert locations[(1, "Output", 0, 2)] == (0, 11, 1)
        assert locations[(1, "Output", 0, 3)] == (1, 1, 6)
示例#22
0
    def test_large_test_patterns_skipped(self):
        test_patterns = OrderedDict([
            (
                (1, "Output", 0, 0),
                TPS(
                    pattern=TP({
                        (1, 0): +1,
                        (0, 1): -1,
                    }),
                    pattern_translation_multiple=(1, 1),
                    target=(1, 1),
                    target_translation_multiple=(1, 1),
                ),
            ),
            (
                (1, "Output", 0, 1),
                TPS(
                    pattern=TP({
                        (100, 0): -1,
                        (0, 100): -1,
                    }),
                    pattern_translation_multiple=(1, 1),
                    target=(1, 1),
                    target_translation_multiple=(1, 1),
                ),
            ),
            (
                (1, "Output", 0, 2),
                TPS(
                    pattern=TP({
                        (1, 0): -1,
                        (0, 1): +1,
                    }),
                    pattern_translation_multiple=(1, 1),
                    target=(1, 1),
                    target_translation_multiple=(1, 1),
                ),
            ),
        ])

        width, height = 20, 10

        pictures, locations = pack_test_patterns(width, height, test_patterns)

        assert len(pictures) == 1
        assert list(locations) == [
            (1, "Output", 0, 0),
            (1, "Output", 0, 2),
        ]

        exp_picture = np.zeros((height, width), dtype=np.int8)
        # First pattern, top left
        exp_picture[0, 1] = +1
        exp_picture[1, 0] = -1
        # Third pattern, underneath
        exp_picture[2, 1] = -1
        exp_picture[3, 0] = +1
        assert np.array_equal(pictures[0], exp_picture)

        assert locations[(1, "Output", 0, 0)] == (0, 1, 1)
        assert locations[(1, "Output", 0, 2)] == (0, 1, 3)
示例#23
0
 def test_neg(self):
     t = TP({
         (0, 0): +1,
         (1, 0): -1,
     })
     assert np.array_equal((-t).polarities, [[-1, +1]])
示例#24
0
 def test_empty(self):
     t = TP({})
     assert t.origin == (0, 0)
     assert t.polarities.shape == (0, 0)
     assert len(t) == 0
示例#25
0
 def test_repr(self):
     t = TP({
         (-10, 20): -1,
     })
     assert repr(t) == "TestPattern({(-10, 20): -1})"