示例#1
0
def imread(img_or_path, flag='color', channel_order='bgr', backend=None):
    """Read an image.

    Args:
        img_or_path (ndarray or str or Path): Either a numpy array or str or
            pathlib.Path. If it is a numpy array (loaded image), then
            it will be returned as is.
        flag (str): Flags specifying the color type of a loaded image,
            candidates are `color`, `grayscale` and `unchanged`.
            Note that the `turbojpeg` backened does not support `unchanged`.
        channel_order (str): Order of channel, candidates are `bgr` and `rgb`.
        backend (str|None): The image decoding backend type. Options are `cv2`,
            `pillow`, `turbojpeg`, `None`. If backend is None, the global
            imread_backend specified by ``use_backend()`` will be used.
            Default: None.

    Returns:
        ndarray: Loaded image array.
    """

    if backend is None:
        backend = imread_backend
    if backend not in supported_backends:
        raise ValueError(f'backend: {backend} is not supported. Supported '
                         "backends are 'cv2', 'turbojpeg', 'pillow'")
    if isinstance(img_or_path, Path):
        img_or_path = str(img_or_path)

    if isinstance(img_or_path, np.ndarray):
        return img_or_path
    elif is_str(img_or_path):
        check_file_exist(img_or_path,
                         f'img file does not exist: {img_or_path}')
        if backend == 'turbojpeg':
            with open(img_or_path, 'rb') as in_file:
                img = jpeg.decode(in_file.read(),
                                  _jpegflag(flag, channel_order))
                if img.shape[-1] == 1:
                    img = img[:, :, 0]
            return img
        elif backend == 'pillow':
            img = Image.open(img_or_path)
            img = _pillow2array(img, flag, channel_order)
            return img
        else:
            flag = imread_flags[flag] if is_str(flag) else flag
            img = cv2.imread(img_or_path, flag)
            if flag == IMREAD_COLOR and channel_order == 'rgb':
                cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
            return img
    else:
        raise TypeError('"img" must be a numpy array or a str or '
                        'a pathlib.Path object')
示例#2
0
def get_classes(dataset):
    """Get class names of a dataset."""
    alias2name = {}
    for name, aliases in dataset_aliases.items():
        for alias in aliases:
            alias2name[alias] = name

    if is_str(dataset):
        if dataset in alias2name:
            labels = eval(alias2name[dataset] + '_classes()')
        else:
            raise ValueError(f'Unrecognized dataset: {dataset}')
    else:
        raise TypeError(f'dataset must a str, but got {type(dataset)}')
    return labels
示例#3
0
def to_tensor(data):
    """Convert objects of various python types to :obj:`torch.Tensor`.

    Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
    :class:`Sequence`, :class:`int` and :class:`float`.

    Args:
        data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to
            be converted.
    """

    if isinstance(data, torch.Tensor):
        return data
    elif isinstance(data, np.ndarray):
        return torch.from_numpy(data)
    elif isinstance(data, Sequence) and not is_str(data):
        return torch.tensor(data)
    elif isinstance(data, int):
        return torch.LongTensor([data])
    elif isinstance(data, float):
        return torch.FloatTensor([data])
    else:
        raise TypeError(f'type {type(data)} cannot be converted to tensor.')
示例#4
0
def imfrombytes(content, flag='color', channel_order='bgr', backend=None):
    """Read an image from bytes.

    Args:
        content (bytes): Image bytes got from files or other streams.
        flag (str): Same as :func:`imread`.
        backend (str|None): The image decoding backend type. Options are `cv2`,
            `pillow`, `turbojpeg`, `None`. If backend is None, the global
            imread_backend specified by ``use_backend()`` will be used.
            Default: None.

    Returns:
        ndarray: Loaded image array.
    """

    if backend is None:
        backend = imread_backend
    if backend not in supported_backends:
        raise ValueError(f'backend: {backend} is not supported. Supported '
                         "backends are 'cv2', 'turbojpeg', 'pillow'")
    if backend == 'turbojpeg':
        img = jpeg.decode(content, _jpegflag(flag, channel_order))
        if img.shape[-1] == 1:
            img = img[:, :, 0]
        return img
    elif backend == 'pillow':
        buff = io.BytesIO(content)
        img = Image.open(buff)
        img = _pillow2array(img, flag, channel_order)
        return img
    else:
        img_np = np.frombuffer(content, np.uint8)
        flag = imread_flags[flag] if is_str(flag) else flag
        img = cv2.imdecode(img_np, flag)
        if flag == IMREAD_COLOR and channel_order == 'rgb':
            cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
        return img
示例#5
0
def print_map_summary(mean_ap,
                      results,
                      dataset=None,
                      scale_ranges=None,
                      logger=None):
    """Print mAP and results of each class.

    A table will be printed to show the gts/dets/recall/AP of each class and
    the mAP.

    Args:
        mean_ap (float): Calculated from `eval_map()`.
        results (list[dict]): Calculated from `eval_map()`.
        dataset (list[str] | str | None): Dataset name or dataset classes.
        scale_ranges (list[tuple] | None): Range of scales to be evaluated.
        logger (logging.Logger | str | None): The way to print the mAP
            summary. See `mmdet.utils.print_log()` for details. Default: None.
    """

    if logger == 'silent':
        return

    if isinstance(results[0]['ap'], np.ndarray):
        num_scales = len(results[0]['ap'])
    else:
        num_scales = 1

    if scale_ranges is not None:
        assert len(scale_ranges) == num_scales

    num_classes = len(results)

    recalls = np.zeros((num_scales, num_classes), dtype=np.float32)
    aps = np.zeros((num_scales, num_classes), dtype=np.float32)
    num_gts = np.zeros((num_scales, num_classes), dtype=int)
    for i, cls_result in enumerate(results):
        if cls_result['recall'].size > 0:
            recalls[:, i] = np.array(cls_result['recall'], ndmin=2)[:, -1]
        aps[:, i] = cls_result['ap']
        num_gts[:, i] = cls_result['num_gts']

    if dataset is None:
        label_names = [str(i) for i in range(num_classes)]
    elif is_str(dataset):
        label_names = get_classes(dataset)
    else:
        label_names = dataset

    if not isinstance(mean_ap, list):
        mean_ap = [mean_ap]

    header = ['class', 'gts', 'dets', 'recall', 'ap']
    for i in range(num_scales):
        if scale_ranges is not None:
            print_log(f'Scale range {scale_ranges[i]}', logger=logger)
        table_data = [header]
        for j in range(num_classes):
            row_data = [
                label_names[j], num_gts[i, j], results[j]['num_dets'],
                f'{recalls[i, j]:.3f}', f'{aps[i, j]:.3f}'
            ]
            table_data.append(row_data)
        table_data.append(['mAP', '', '', '', f'{mean_ap[i]:.3f}'])
        table = AsciiTable(table_data)
        table.inner_footing_row_border = True
        print_log('\n' + table.table, logger=logger)