def num_veering_structs(M, angles=None, use_flipper=True): """ Tries to count them (in a very naive way). Tries to eliminate overcounting due to symmetries (in reduced_angles) but will fail if one of the symmetries is hidden by retriangulation. If use_flipper = False then we get a (true) lower bound, since then it only counts veering structures on the given triangulation. """ if angles == None: angles = reduced_angles(M) tri = regina.Triangulation3(M) for angle in angles: if not is_taut(tri, angle): return None for angle in angles: if not (is_veering(tri, angle) or is_layered(tri, angle)): return None total = 0 for angle in angles: if is_veering(tri, angle): total = total + 1 elif use_flipper: assert is_layered(tri, angle) print(M.name(), angle, "needs flipper") try: if not has_internal_singularities(tri, angle): total = total + 1 except: print("flipper failed") return total
def find_veering_from_drilled(start_isoSig, name=None, search_depth=100, ceiling=8, check_property=False, property=None, save_dir=None): #first check if the first one is not veering tri, angle = isosig_to_tri_angle(start_isoSig) if is_veering(tri, angle): print('start_isoSig is veering') else: start_node = taut_pachner_node(start_isoSig, ceiling=ceiling) start_node.came_from = None big_dict_of_nodes = {start_isoSig: start_node} frontier_isoSigs = set([start_isoSig]) print(len(big_dict_of_nodes), len(frontier_isoSigs)) for counter in range(search_depth): if len(frontier_isoSigs) == 0: #we are done... break new_frontier_isoSigs = set([]) # for each element in the frontier check to see if it appears on the big_list_of_sigs if not we add it to the big list for cur_isoSig in frontier_isoSigs: current_node = big_dict_of_nodes[cur_isoSig] neighbour_isoSigs = current_node.all_neighbour_isoSigs() for nb_isoSig in neighbour_isoSigs: if not nb_isoSig in big_dict_of_nodes: nb_tri, nb_angle = current_node.neighbour_moves_tri_angles[ nb_isoSig] new_node = taut_pachner_node(nb_isoSig, tri=nb_tri, angle=nb_angle, ceiling=ceiling) new_node.came_from = cur_isoSig if counter == search_depth - 1: #last layer new_node.is_frontier = True new_frontier_isoSigs.add(nb_isoSig) big_dict_of_nodes[nb_isoSig] = new_node if is_veering(nb_tri, nb_angle): print_path(nb_isoSig, big_dict_of_nodes) print('veering:', isosig_from_tri_angle(nb_tri, nb_angle)) break frontier_isoSigs = new_frontier_isoSigs print(len(big_dict_of_nodes), len(frontier_isoSigs)) return None
def upper_branched_surface(tri, angle, return_lower=False): """Returns the upper branched surface for a veering triangulation""" veering_colours = is_veering(tri, angle, return_type="veering_colours") tet_vert_coorientations = is_transverse_taut( tri, angle, return_type="tet_vert_coorientations") assert veering_colours != False and tet_vert_coorientations != False branch = [] for i, a in enumerate(angle): assert tet_vert_coorientations[i][0] == tet_vert_coorientations[i][ a + 1] ### the other end of the pi edge at 0 large_edge_num = vert_pair_to_edge_num[(0, a + 1)] tiny_edge_num = 5 - large_edge_num if ( tet_vert_coorientations[i][0] == -1 ) != return_lower: ### into the tetrahedron through face 0, xor get lower branched surface large_edge_num, tiny_edge_num = tiny_edge_num, large_edge_num # swap tiny_edge_colour = veering_colours[tri.tetrahedron(i).edge( tiny_edge_num).index()] mixed_edge_pair_num = (vert_pair_to_edge_num[(0, a + 1)] + 1) % 3 ### can view as an edge num too... if veering_colours[tri.tetrahedron(i).edge( mixed_edge_pair_num).index()] != tiny_edge_colour: mixed_edge_pair_num = (mixed_edge_pair_num + 1) % 3 ### then its the other one branch.append( branch_num_from_large_edge_and_mixed_edge_pair_num( large_edge_num, mixed_edge_pair_num)) # assert is_branched(tri, branch) assert has_non_sing_semiflow(tri, branch) return branch
def num_toggles_red_blue(triang_data): tet_types = is_veering(triang_data['tri'], [int(a) for a in triang_data['angle']], return_type='tet_types') counts = [ tet_types.count('toggle'), tet_types.count("red"), tet_types.count("blue") ] return '[' + ','.join([str(i) for i in counts]) + ']'
def can_deal_with_reduced_angle(tri, angle): """ Returns True or False, as our techniques can recognise the given reduced angle structure. """ if not is_taut(tri, angle): return False if is_veering(tri, angle): return True if is_layered(tri, angle): # has_internal_singularities is not needed here. return True return False
def triangle_is_red(tri, angle, face_index, tet_vert_coorientations=None): if tet_vert_coorientations == None: tet_vert_coorientations = is_transverse_taut( tri, angle, return_type="tet_vert_coorientations") edge_index_where_uppermost = where_faces_are_uppermost( tri, angle, tet_vert_coorientations )[face_index] #face has the same colour as the edge where it is uppermost colour = is_veering( tri, angle, return_type='veering_colours')[edge_index_where_uppermost] return (colour == 'red')
def mutate(tri, angle, weights, isom, tet_vert_coorientations=None, quiet=False): if tet_vert_coorientations == None: tet_vert_coorientations = is_transverse_taut( tri, angle, return_type="tet_vert_coorientations") regluing = surface_isom_to_regluing_pattern(tri, angle, weights, isom, tet_vert_coorientations) #print('regluing data:', regluing) # first unglue all faces that need to be unglued, then reglue them via isom # can't do both at the same step, because regina goes crazy when you try to glue a face to a face which is already glued somewhere else for x in regluing: tet_below_top_triangle = tri.tetrahedron(x[0]) which_face = x[1] tet_below_top_triangle.unjoin(which_face) #print('unglued face', which_face, 'of tet', tet_below_top_triangle.index()) for x in regluing: tet_below_top_triangle = tri.tetrahedron(x[0]) which_face = x[1] tet_above_image_triangle = tri.tetrahedron(x[2]) perm = x[3] tet_below_top_triangle.join(which_face, tet_above_image_triangle, perm) #print('glued face', which_face, 'of tet', tet_below_top_triangle.index(), 'to tet', tet_above_image_triangle.index(), 'via', perm) assert tri.isValid() assert tri.countBoundaryFacets() == 0 if quiet == False: print('mutant isosig:', tri.isoSig()) print('taut:', is_taut(tri, angle)) if is_taut(tri, angle): print('transverse taut:', is_transverse_taut(tri, angle)) print('veering:', is_veering(tri, angle)) else: edge_num = tri.countEdges() print('Got', edge_num, 'edges out of', tri.countTetrahedra()) totals = is_taut(tri, angle, return_totals=True) print('Angles:', totals)
# sig = 'eLMkbcddddedde_2100' # sig = 'eLMkbcdddhxqlm_1200' # sig = 'eLAkaccddjsnak_2001' # sig = 'eLAkbbcdddhwqj_2102' # sig = 'fLLQcbcdeeelonlel_02211' ## should have three different midsurface bdy components, so four total after drilling # sig = 'fLLQcbddeeehrcdui_12000' ## five boundary components # sig = 'fLAMcbbcdeedhwqqs_21020' # sig = 'qvvLPQwAPLQkfhgffijlkmnopoppoaaaaaaaaaaaaadddd_1020212200111100' # t = excise_fans(sig) # t.save('excise_fans_' + sig + '.rga') # t0, _ = isosig_to_tri_angle('cPcbbbdxm_10') # t1, _ = isosig_to_tri_angle('cPcbbbiht_12') # print t.isIsomorphicTo(t0) != None or t.isIsomorphicTo(t1) != None # print fan_stacks(sig) import veering import transverse_taut import taut from file_io import parse_data_file census = parse_data_file('Data/veering_census.txt') for sig in census[:200]: tri, angle = excise_fans(sig) print((sig, tri.countTetrahedra(), angle, taut.is_taut(tri, angle))) assert veering.is_veering(tri, angle) assert transverse_taut.is_transverse_taut(tri, angle) # print sig, fan_stacks(sig)
def build_surface(tri, angle, weights, tet_vert_coorientations=None, return_edge_colours=False): if tet_vert_coorientations == None: tet_vert_coorientations = is_transverse_taut( tri, angle, return_type="tet_vert_coorientations") surface = regina.Triangulation2() n = tri.countTetrahedra() for i in range(2 * n): for j in range(weights[i]): surface.newTriangle() colours = is_veering(tri, angle, return_type='veering_colours') edge_colours_pairs = [] # red, blue or black (dual to large branches) for edge in tri.edges(): pairings = pairing_of_faces_across_an_edge(tri, angle, weights, edge.index(), tet_vert_coorientations) height = len(pairings[0]) #print('height', height) #now we get (face_index, index of e in the face) so have to pick the first one face_indices0 = [pairings[0][i][0] for i in range(height)] face_indices1 = [pairings[1][i][0] for i in range(height)] for i in range(height): #face0_index = pairings[0][i][0] #now we get (face_index, index of e in the face) so have to pick the first one face0_index = face_indices0[i] edge_index_in_face0 = pairings[0][i][1] #face1_index = pairings[1][i][0] face1_index = face_indices1[i] edge_index_in_face1 = pairings[1][i][1] which_copy0 = face_indices0[:i].count(face0_index) # check if not overcounting (if a face is both uppermost and lowermost on the same side) if is_uppermost(tri, angle, face0_index, edge_index_in_face0, edge.index(), tet_vert_coorientations ) and appears_twice_on_the_same_side( tri, angle, face0_index, edge.index(), tet_vert_coorientations): which_copy0 = which_copy0 - weights[face0_index] which_copy1 = face_indices1[:i].count(face1_index) if is_uppermost(tri, angle, face1_index, edge_index_in_face1, edge.index(), tet_vert_coorientations ) and appears_twice_on_the_same_side( tri, angle, face1_index, edge.index(), tet_vert_coorientations): which_copy1 = which_copy1 - weights[face1_index] #which_copy0 = face_indices0[:i].count(face0_index) #which_copy1 = face_indices1[:i].count(face1_index) which_triangle0 = sum(weights[:face0_index]) + which_copy0 which_triangle1 = sum(weights[:face1_index]) + which_copy1 #print('which triangle 0', which_triangle0) #print('which triangle 1', which_triangle1) if colours[edge.index( )] == 'red': # gluing triangles across a red edge if is_uppermost(tri, angle, face0_index, edge_index_in_face0, edge.index(), tet_vert_coorientations): if is_uppermost(tri, angle, face1_index, edge_index_in_face1, edge.index(), tet_vert_coorientations): surface.triangle(which_triangle0).join( 2, surface.triangle(which_triangle1), regina.Perm3(1, 0, 2)) #first we append edge_colours with tuples [face_index, edge_index_in_face, colour]; after finishing the triangulation we will change it into a tuple of colours ordered by indices edge_colours_pairs.append( [which_triangle0, 2, 'black']) else: # middle and lowermost have the same permutation surface.triangle(which_triangle0).join( 2, surface.triangle(which_triangle1), regina.Perm3(0, 2, 1)) edge_colours_pairs.append([which_triangle0, 2, 'red']) else: # middle or lowermost if is_uppermost(tri, angle, face1_index, edge_index_in_face1, edge.index(), tet_vert_coorientations): surface.triangle(which_triangle0).join( 1, surface.triangle(which_triangle1), regina.Perm3(0, 2, 1)) edge_colours_pairs.append([which_triangle0, 1, 'red']) else: surface.triangle(which_triangle0).join( 1, surface.triangle(which_triangle1), regina.Perm3(2, 1, 0)) edge_colours_pairs.append([which_triangle0, 1, 'red']) else: # gluing triangles across a blue edge if is_uppermost(tri, angle, face0_index, edge_index_in_face0, edge.index(), tet_vert_coorientations): if is_uppermost(tri, angle, face1_index, edge_index_in_face1, edge.index(), tet_vert_coorientations): surface.triangle(which_triangle0).join( 2, surface.triangle(which_triangle1), regina.Perm3(1, 0, 2)) edge_colours_pairs.append( [which_triangle0, 2, 'black']) else: # middle and lowermost have the same permutation surface.triangle(which_triangle0).join( 2, surface.triangle(which_triangle1), regina.Perm3(2, 1, 0)) edge_colours_pairs.append([which_triangle0, 2, 'blue']) else: # middle or lowermost if is_uppermost(tri, angle, face1_index, edge_index_in_face1, edge.index(), tet_vert_coorientations): surface.triangle(which_triangle0).join( 0, surface.triangle(which_triangle1), regina.Perm3(2, 1, 0)) edge_colours_pairs.append([which_triangle0, 0, 'blue']) else: surface.triangle(which_triangle0).join( 0, surface.triangle(which_triangle1), regina.Perm3(0, 2, 1)) edge_colours_pairs.append([which_triangle0, 0, 'blue']) assert surface.isClosed() #print (edge_colours_pairs) if return_edge_colours == True: k = surface.countEdges() edge_colours = [None] * k for x in edge_colours_pairs: edge_index = surface.triangle(x[0]).edge(x[1]).index() edge_colours[edge_index] = x[2] return surface, edge_colours return surface
def veering_mobius_dehn_surgery(triangulation, angle_struct, face_num): tri = regina.Triangulation3(triangulation) # make a copy angle = list(angle_struct) # make a copy face = tri.triangle(face_num) assert face.isMobiusBand() # Note that dunce caps cannot appear in a veering triangulation # Find which vertex is on both copies of the identified edge of the face edges = [face.edge(i) for i in range(3)] # edge i is opposite vertex i, i in [0, 1, 2] for j in range(3): if edges[j] == edges[(j + 1) % 3]: B = (j + 2) % 3 break embed0 = face.embedding(0) embed1 = face.embedding(1) tet0 = embed0.tetrahedron() tet1 = embed1.tetrahedron() embed0_verts = embed0.vertices() embed1_verts = embed1.vertices() # In tet0: B gives "b". Let "c" be the edge sharing a # pi with "b". Let "d" be the vertex not meeting the given face. # Let "a" be the remaining vertex. b = embed0.vertices()[B] c = shares_pi_with(angle[tet0.index()], b) d = embed0.vertices()[3] # ... use the face index a = [i for i in [0, 1, 2, 3] if i not in [b, c, d]].pop() # ... whatever is left # similarly in tet1 - B gives "q". Let "r" be the edge sharing a # pi with "q". Let "s" be the vertex not meeting the given face. # Let "p" be the remaining vertex. q = embed1.vertices()[B] r = shares_pi_with(angle[tet1.index()], q) s = embed1.vertices()[3] # ... use the face index p = [i for i in [0, 1, 2, 3] if i not in [q, r, s]].pop() # ... whatever is left # get colour of mobius strip pair_a = [b, c] pair_a.sort() mob_edge_a = tet0.edge(vert_pair_to_edge_num[tuple(pair_a)]) pair_c = [a, b] pair_c.sort() mob_edge_c = tet0.edge(vert_pair_to_edge_num[tuple(pair_c)]) assert mob_edge_a == mob_edge_c veering_colours = is_veering(tri, angle, return_type="veering_colours") assert veering_colours != False # otherwise the triangulation is not veering mob_colour = veering_colours[mob_edge_a.index()] # Now actually do the surgery tet0.unjoin(d) # same as tet1.unjoin(s) tet_new = tri.newTetrahedron() if mob_colour == "red": tet_new.join(0, tet_new, regina.Perm4(3, 0, 1, 2)) tet_new.join(1, tet0, regina.Perm4(c, d, a, b)) tet_new.join(2, tet1, regina.Perm4(q, p, s, r)) else: tet_new.join(1, tet_new, regina.Perm4(1, 3, 0, 2)) tet_new.join(2, tet0, regina.Perm4(a, b, d, c)) tet_new.join(0, tet1, regina.Perm4(s, r, p, q)) angle.append(0) # this is the correct taut angle for our new tetrahedron assert is_taut(tri, angle) assert is_veering(tri, angle) return tri, angle, tet_new.triangle(3).index()
def run_tests(num_to_check=10, smaller_num_to_check = 10): import taut veering_isosigs = parse_data_file("Data/veering_census.txt") print("testing is_taut") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) assert taut.is_taut(tri, angle), sig print("testing isosig round trip") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) recovered_sig = taut.isosig_from_tri_angle(tri, angle) assert sig == recovered_sig, sig # we only test this round trip - the other round trip does not # make sense because tri->isosig is many to one. import transverse_taut print("testing is_transverse_taut") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) assert transverse_taut.is_transverse_taut(tri, angle), sig non_transverse_taut_isosigs = parse_data_file("Data/veering_non_transverse_taut_examples.txt") print("testing not is_transverse_taut") for sig in non_transverse_taut_isosigs: tri, angle = taut.isosig_to_tri_angle(sig) assert not transverse_taut.is_transverse_taut(tri, angle), sig import veering print("testing is_veering") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) assert veering.is_veering(tri, angle), sig # tri, angle = taut.isosig_to_tri_angle("cPcbbbdxm_10") # explore_mobius_surgery_graph(tri, angle, max_tetrahedra = 12) # # tests to see that it makes only veering triangulations as it goes import veering_dehn_surgery print("testing veering_dehn_surgery") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) for face_num in veering_dehn_surgery.get_mobius_strip_indices(tri): (tri_s, angle_s, face_num_s) = veering_dehn_surgery.veering_mobius_dehn_surgery(tri, angle, face_num) assert veering.is_veering(tri_s, angle_s), sig import veering_fan_excision print("testing veering_fan_excision") m003, _ = taut.isosig_to_tri_angle('cPcbbbdxm_10') m004, _ = taut.isosig_to_tri_angle('cPcbbbiht_12') for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) tet_types = veering.is_veering(tri, angle, return_type = "tet_types") if tet_types.count("toggle") == 2: excised_tri, _ = veering_fan_excision.excise_fans(tri, angle) assert ( excised_tri.isIsomorphicTo(m003) != None or excised_tri.isIsomorphicTo(m004) != None ), sig import pachner print("testing pachner with taut structure") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) face_num = random.randrange(tri.countTriangles()) result = pachner.twoThreeMove(tri, face_num, angle = angle, return_edge = True) if result != False: tri2, angle2, edge_num = result tri3, angle3 = pachner.threeTwoMove(tri2, edge_num, angle = angle2) assert taut.isosig_from_tri_angle(tri, angle) == taut.isosig_from_tri_angle(tri3, angle3), sig import branched_surface import regina print("testing branched_surface and pachner with branched surface") for sig in random.sample(veering_isosigs, num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) tri_original = regina.Triangulation3(tri) #copy branch = branched_surface.upper_branched_surface(tri, angle, return_lower = random.choice([True, False])) ### test branch isosig round trip sig_with_branch = branched_surface.isosig_from_tri_angle_branch(tri, angle, branch) tri2, angle2, branch2 = branched_surface.isosig_to_tri_angle_branch(sig_with_branch) assert (branch == branch2) and (angle == angle2), sig branch_original = branch[:] #copy face_num = random.randrange(tri.countTriangles()) out = pachner.twoThreeMove(tri, face_num, branch = branch, return_edge = True) if out != False: tri, possible_branches, edge_num = out tri, branch = pachner.threeTwoMove(tri, edge_num, branch = possible_branches[0]) all_isoms = tri.findAllIsomorphisms(tri_original) all_branches = [branched_surface.apply_isom_to_branched_surface(branch, isom) for isom in all_isoms] assert branch_original in all_branches, sig import flow_cycles import drill print("testing taut and branched drill + semiflows on drillings") for sig in random.sample(veering_isosigs, smaller_num_to_check): tri, angle = taut.isosig_to_tri_angle(sig) branch = branched_surface.upper_branched_surface(tri, angle) ### also checks for veering and transverse taut found_loops = flow_cycles.find_flow_cycles(tri, branch) for loop in random.sample(found_loops, min(len(found_loops), 5)): ## drill along at most 5 loops tri, angle = taut.isosig_to_tri_angle(sig) branch = branched_surface.upper_branched_surface(tri, angle) tri_loop = flow_cycles.flow_cycle_to_triangle_loop(tri, branch, loop) if tri_loop != False: if not flow_cycles.tri_loop_is_boundary_parallel(tri_loop, tri): drill.drill(tri, tri_loop, angle = angle, branch = branch, sig = sig) assert branched_surface.has_non_sing_semiflow(tri, branch), sig print("all basic tests passed") try: import snappy import snappy_util snappy_working = True except: print("failed to import from snappy?") snappy_working = False if snappy_working: print("testing algebraic intersection") census = snappy.OrientableCuspedCensus() # not a set or list, so can't use random.sample for i in range(10): M = random.choice(census) n = M.num_cusps() peripheral_curves = M.gluing_equations()[-2*n:] for i in range(2*n): for j in range(i, 2*n): alg_int = snappy_util.algebraic_intersection(peripheral_curves[i], peripheral_curves[j]) if i % 2 == 0 and j == i + 1: assert alg_int == 1, M.name() else: assert alg_int == 0, M.name() if snappy_working: import veering_drill_midsurface_bdy print("testing veering drilling and filling") for sig in random.sample(veering_isosigs[:3000], num_to_check): T, per = veering_drill_midsurface_bdy.drill_midsurface_bdy(sig) M = snappy.Manifold(T.snapPea()) M.set_peripheral_curves("shortest") L = snappy_util.get_slopes_from_peripherals(M, per) M.dehn_fill(L) N = snappy.Manifold(sig.split("_")[0]) assert M.is_isometric_to(N), sig if snappy_working: print("all tests depending on snappy passed") # try: # from hashlib import md5 # from os import remove # import pyx # from boundary_triangulation import draw_triangulation_boundary_from_veering_isosig # pyx_working = True # except: # print("failed to import from pyx?") # pyx_working = False # ladders_style_sigs = { # "cPcbbbiht_12": "f34c1fdf65db9d02994752814803ae01", # "gLLAQbecdfffhhnkqnc_120012": "091c85b4f4877276bfd8a955b769b496", # "kLALPPzkcbbegfhgijjhhrwaaxnxxn_1221100101": "a0f15a8454f715f492c74ce1073a13a4", # } # geometric_style_sigs = { # "cPcbbbiht_12": "1e74d0b68160c4922e85a5adb20a0f1d", # "gLLAQbecdfffhhnkqnc_120012": "856a1fce74eb64f519bcda083303bd8f", # "kLALPPzkcbbegfhgijjhhrwaaxnxxn_1221100101": "33bd23b34c5d977a103fa50ffe63120a", # } # args = { # "draw_boundary_triangulation":True, # "draw_triangles_near_poles": False, # "ct_depth":-1, # "ct_epsilon":0.03, # "global_drawing_scale": 4, # "delta": 0.2, # "ladder_width": 10.0, # "ladder_height": 20.0, # "draw_labels": True, # } # shapes_data = read_from_pickle("Data/veering_shapes_up_to_ten_tetrahedra.pkl") # if pyx_working: # for sig in ladders_style_sigs: # print("testing boundary triangulation pictures, ladder style", sig) # args["tet_shapes"] = shapes_data[sig] # args["style"] = "ladders" # file_name = draw_triangulation_boundary_from_veering_isosig(sig, args = args) # f = open(file_name, "rb") # file_hash = md5(f.read()) # assert file_hash.hexdigest() == ladders_style_sigs[sig] # f.close() # remove(file_name) # if pyx_working: # for sig in geometric_style_sigs: # print("testing boundary triangulation pictures, ladder style", sig) # args["tet_shapes"] = shapes_data[sig] # args["style"] = "geometric" # file_name = draw_triangulation_boundary_from_veering_isosig(sig, args = args) # f = open(file_name, "rb") # file_hash = md5(f.read()) # assert file_hash.hexdigest() == geometric_style_sigs[sig] # f.close() # remove(file_name) # if pyx_working: # print("all tests depending on pyx passed") veering_polys = { "cPcbbbiht_12": [-4, -1, 1, 4], "eLMkbcddddedde_2100": [-2, -2, -2, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 2, 2], "gLLAQbecdfffhhnkqnc_120012": [-1, -1, -1, -1, 1, 1, 1, 1], "gLLPQcdfefefuoaaauo_022110": [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1], } # veering_polys = { ### old # "cPcbbbiht_12": "a^3 - 4*a^2 + 4*a - 1", # "eLMkbcddddedde_2100": "a^6*b - a^6 - 2*a^5*b - a^4*b^2 + a^5 + 2*a^4*b + a^3*b^2 - 2*a^3*b + a^3 + 2*a^2*b + a*b^2 - a^2 - 2*a*b - b^2 + b", # "gLLAQbecdfffhhnkqnc_120012": "a^7 + a^6 + a^5 + a^4 - a^3 - a^2 - a - 1", # "gLLPQcdfefefuoaaauo_022110": "a^12*b^3 - a^11*b^2 - a^10*b^3 - a^10*b^2 - a^7*b^3 - a^7*b^2 - a^6*b^3 + a^7*b + a^5*b^2 - a^6 - a^5*b - a^5 - a^2*b - a^2 - a*b + 1", # } taut_polys = { "cPcbbbiht_12": [-3, 1, 1], "eLMkbcddddedde_2100": [-1, -1, -1, 1, 1], "iLLAwQcccedfghhhlnhcqeesr_12001122": [], } # taut_polys = { ### old # "cPcbbbiht_12": "a^2 - 3*a + 1", # "eLMkbcddddedde_2100": "a^2*b - a^2 - a*b - b^2 + b", # "iLLAwQcccedfghhhlnhcqeesr_12001122": "0", # } torus_bundles = [ "cPcbbbiht_12", "eLMkbcdddhhqqa_1220", "gLMzQbcdefffhhqqqdl_122002", ] measured = [ "gLLAQbecdfffhhnkqnc_120012", "iLLALQcccedhgghhlnxkxrkaa_12001112", "iLLAwQcccedfghhhlnhcqeesr_12001122", ] empties = [ "fLAMcaccdeejsnaxk_20010", "gLALQbcbeeffhhwsras_211220", "hLALAkbcbeefgghhwsraqj_2112202", ] try: from sage.rings.integer_ring import ZZ sage_working = True except: print("failed to import from sage?") sage_working = False if sage_working: import taut_polytope print("testing is_layered") for sig in veering_isosigs[:17]: assert taut_polytope.is_layered(sig), sig for sig in veering_isosigs[17:21]: assert not taut_polytope.is_layered(sig), sig if sage_working: import fibered print("testing is_fibered") mflds = parse_data_file("Data/mflds_which_fiber.txt") mflds = [line.split("\t")[0:2] for line in mflds] for (name, kind) in random.sample(mflds, num_to_check): assert fibered.is_fibered(name) == (kind == "fibered"), name if sage_working: import veering_polynomial import taut_polynomial print("testing veering poly") for sig in veering_polys: p = veering_polynomial.veering_polynomial(sig) assert check_polynomial_coefficients(p, veering_polys[sig]), sig ### Nov 2021: sage 9.4 changed how smith normal form works, which changed our polynomials ### to equivalent but not equal polynomials. To avoid this kind of change breaking things ### in the future, we changed to comparing the list of coefficients. # assert p.__repr__() == veering_polys[sig] print("testing taut poly") for sig in taut_polys: p = taut_polynomial.taut_polynomial_via_tree(sig) assert check_polynomial_coefficients(p, taut_polys[sig]), sig # assert p.__repr__() == taut_polys[sig] print("testing divide") for sig in random.sample(veering_isosigs[:3000], num_to_check): p = veering_polynomial.veering_polynomial(sig) q = taut_polynomial.taut_polynomial_via_tree(sig) if q == 0: assert p == 0, sig else: assert q.divides(p), sig if sage_working: print("testing alex") for sig in random.sample(veering_isosigs[:3000], num_to_check): snap_sig = sig.split("_")[0] M = snappy.Manifold(snap_sig) if M.homology().betti_number() == 1: assert taut_polynomial.taut_polynomial_via_tree(sig, mode = "alexander") == M.alexander_polynomial(), sig if sage_working: # would be nice to automate this - need to fetch the angle # structure say via z_charge.py... print("testing is_torus_bundle") for sig in torus_bundles: assert taut_polytope.is_torus_bundle(sig), sig if sage_working: # ditto print("testing is_layered") for sig in torus_bundles: assert taut_polytope.is_layered(sig), sig print("testing measured") for sig in measured: assert taut_polytope.LMN_tri_angle(sig) == "M", sig print("testing empty") for sig in empties: assert taut_polytope.LMN_tri_angle(sig) == "N", sig if sage_working: # warning - this takes random amounts of time! print("testing hom dim") for sig in random.sample(veering_isosigs[:3000], 3): # magic number # dimension = zero if and only if nothing is carried. assert (taut_polytope.taut_cone_homological_dim(sig) == 0) == (taut_polytope.LMN_tri_angle(sig) == "N"), sig if sage_working: boundary_cycles = { ("eLMkbcddddedde_2100",(2,5,5,1,3,4,7,1)): "((-7, -7, 0, 0, 4, -3, 7, 0), (7, 7, 0, 0, -4, 3, -7, 0))", ("iLLLQPcbeegefhhhhhhahahha_01110221",(0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0)): "((0, 0, -1, 1, 1, 0, 1, 1, -1, 0, 0, 0, 0, 1, 0, 1), (0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1))", ("ivvPQQcfhghgfghfaaaaaaaaa_01122000",(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)): "((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0), (-2, 0, -3, 1, 2, -1, 0, 2, -1, 0, 3, 1, -2, 1, 0, -1), (0, -2, 1, -3, 0, -1, 2, 0, -1, 2, -1, 1, 0, 1, -2, 3))", } taut_polys_with_cycles = { ("eLMkbcddddedde_2100", ((7, 7, 0, 0, -4, 3, -7, 0),)): [-1, -1, -1, 1, 1], ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): [1, 1, 2], ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): [-4, -1, -1, 1, 1], } # taut_polys_with_cycles = { # ("eLMkbcddddedde_2100", ((7, 7, 0, 0, -4, 3, -7, 0),)): "a^14 - a^8 - a^7 - a^6 + 1", # ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): "a^2 + 2*a + 1", # ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): "a*b^2 - a^2 - 4*a*b - b^2 + a", # } taut_polys_image = { ('eLMkbcddddedde_2100', ((7, 8, -1, 0, -4, 4, -8, 0),)):[-1, -1, -1, 1, 1], ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2),)):[-2, -2, -1, -1, 1, 1], ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))):[-4, -1, -1, 1, 1] } # taut_polys_image = { # ('eLMkbcddddedde_2100', ((7, 8, -1, 0, -4, 4, -8, 0),)):"a^16 - a^9 - a^8 - a^7 + 1", # ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2),)):"a*b^2*c - 2*a*b*c - b^2*c - a^2 - 2*a*b + a", # ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))):"a*b^2 - a^2 - 4*a*b - b^2 + a" # } alex_polys_with_cycles = { ("eLMkbcddddedde_2100",((7, 7, 0, 0, -4, 3, -7, 0),)): [-2, -1, -1, -1, 1, 1, 1, 2], ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): [-3, -1, 1, 3], ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): [-1, -1, 1, 1], } # alex_polys_with_cycles = { # ("eLMkbcddddedde_2100",((7, 7, 0, 0, -4, 3, -7, 0),)): "a^15 - a^14 + a^9 - 2*a^8 + 2*a^7 - a^6 + a - 1", # ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): "3*a^3 - a^2 + a - 3", # ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): "a*b^2 - a^2 - b^2 + a", # } if sage_working: import taut_carried print("testing boundary cycles") for sig, surface in boundary_cycles: surface_list = list(surface) cycles = taut_carried.boundary_cycles_from_surface(sig, surface_list) cycles = tuple(tuple(cycle) for cycle in cycles) assert cycles.__repr__() == boundary_cycles[(sig, surface)], sig if sage_working: print("testing taut with cycles") for sig, cycles in taut_polys_with_cycles: cycles_in = [list(cycle) for cycle in cycles] p = taut_polynomial.taut_polynomial_via_tree(sig, cycles_in) assert check_polynomial_coefficients(p, taut_polys_with_cycles[(sig, cycles)]), sig # assert p.__repr__() == taut_polys_with_cycles[(sig, cycles)] if sage_working: print("testing taut with images") for sig, cycles in taut_polys_image: cycles_in = [list(cycle) for cycle in cycles] p = taut_polynomial.taut_polynomial_image(sig, cycles_in) assert check_polynomial_coefficients(p, taut_polys_image[(sig, cycles)]), sig # assert p.__repr__() == taut_polys_image[(sig, cycles)] if sage_working: print("testing alex with cycles") for sig, cycles in alex_polys_with_cycles: cycles_in = [list(cycle) for cycle in cycles] p = taut_polynomial.taut_polynomial_via_tree(sig, cycles_in, mode = "alexander") assert check_polynomial_coefficients(p, alex_polys_with_cycles[(sig, cycles)]), sig # assert p.__repr__() == alex_polys_with_cycles[(sig, cycles)] if sage_working: import edge_orientability import taut_euler_class print("testing euler and edge orientability") for sig in random.sample(veering_isosigs[:3000], 3): # Theorem: If (tri, angle) is edge orientable then e = 0. assert not ( edge_orientability.is_edge_orientable(sig) and (taut_euler_class.order_of_euler_class_wrapper(sig) == 2) ), sig if sage_working: # Theorem: If (tri, angle) is edge orientable then taut poly = alex poly. # taut_polynomial.taut_polynomial_via_tree(sig, mode = "alexander") == # taut_polynomial.taut_polynomial_via_tree(sig, mode = "taut") pass if sage_working: print("testing exotics") for sig in random.sample(veering_isosigs[:3000], 3): tri, angle = taut.isosig_to_tri_angle(sig) T = veering.veering_triangulation(tri, angle) is_eo = T.is_edge_orientable() for angle in T.exotic_angles(): assert taut_polytope.taut_cone_homological_dim(tri, angle) == 0, sig assert is_eo == transverse_taut.is_transverse_taut(tri, angle), sig ### test for drill_midsurface_bdy: drill then fill, check you get the same manifold if sage_working: from sage.combinat.words.word_generators import words from sage.modules.free_module_integer import IntegerLattice from sage.modules.free_module import VectorSpace from sage.matrix.constructor import Matrix import z_charge import z2_taut import regina ZZ2 = ZZ.quotient(ZZ(2)) sig_starts = ["b+-LR", "b++LR"] print("testing lattice for punc torus bundle") for i in range(3): for sig_start in sig_starts: sig = sig_start + str(words.RandomWord(8, 2, "LR")) # 8 is a magic number M = snappy.Manifold(sig) tri = regina.Triangulation3(M) t, A = z_charge.sol_and_kernel(M) B = z_charge.leading_trailing_deformations(M) C = z2_taut.cohomology_loops(tri) AA = IntegerLattice(A) BB = IntegerLattice(B) assert AA == BB.saturation(), sig dim = 3*M.num_tetrahedra() V = VectorSpace(ZZ2, dim) AA = V.subspace(A) BB = V.subspace(B) CM = Matrix(ZZ2, C) CC = CM.right_kernel() assert AA.intersection(CC) == BB , sig ## so l-t defms are the part of the kernel that doesn't flip over if sage_working: print("testing charges for punc torus bundle") for i in range(3): for sig_start in sig_starts: sig = sig_start + str(words.RandomWord(8, 2, "LR")) # 8 is a magic number M = snappy.Manifold(sig) assert z_charge.can_deal_with_reduced_angles(M), sig if sage_working: import carried_surface import mutation print("testing building carried surfaces and mutations") sigs_weights = [ ['iLLLPQccdgefhhghqrqqssvof_02221000', (0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)], ['jLLAvQQcedehihiihiinasmkutn_011220000', (2, 0, 1, 0, 0, 0, 1, 2, 0, 2, 0, 2, 1, 0, 0, 0, 1, 0)], ['jLLAvQQcedehihiihiinasmkutn_011220000', (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)], ['jLLLMPQcdgfhfhiiihshassspiq_122201101', (0, 0, 4, 0, 4, 1, 0, 2, 2, 0, 1, 0, 0, 4, 0, 4, 0, 0)] ] strata = [ ((1, 2), [2, 2]), ((2, 4), [5, 5, 1, 1]), ((0, 3), [2, 0, 0]), ((6, 1), [22]) ] orders_of_veering_symmetry_groups = [4, 2, 2, 2] for i in range(len(sigs_weights)): tri, angle = taut.isosig_to_tri_angle(sigs_weights[i][0]) weights = sigs_weights[i][1] surface, edge_colours = carried_surface.build_surface(tri, angle, weights, return_edge_colours = True) assert strata[i] == carried_surface.stratum_from_weights_surface(weights, surface) veering_isoms = carried_surface.veering_symmetry_group(surface, edge_colours) assert len(veering_isoms) == orders_of_veering_symmetry_groups[i] isom = veering_isoms[1] mutation.mutate(tri, angle, weights, isom, quiet = True) if i == 0: assert tri.isoSig() == 'ivLLQQccfhfeghghwadiwadrv' #print('svof to wadrv passed') elif i == 1: assert tri.isoSig() == 'jvLLAQQdfghhfgiiijttmtltrcr' #print('smkutn to tltrcr passed') elif i == 2: assert tri.isoSig() == 'jLLMvQQcedehhiiihiikiwnmtxk' #print('smkutn to mtxk passed') elif i == 3: assert tri.isoSig() == 'jLLALMQcecdhggiiihqrwqwrafo' #print('spiq to rafo passed') if sage_working: print("all tests depending on sage passed")
def edges_to_tetrahedra_matrix(triangulation, angle_structure, coorientations, normalisation, ZH, P): edge_colours = is_veering(triangulation, angle_structure, return_type="veering_colours") if verbose > 0: print(("edge_colours", edge_colours)) red_tetrahedra = [] blue_tetrahedra = [] for tet in triangulation.tetrahedra(): if has_red_lower_edge(tet, coorientations, edge_colours): red_tetrahedra.append(tet) else: blue_tetrahedra.append(tet) if verbose > 0: print(("how many reds and blues", len(red_tetrahedra), len(blue_tetrahedra))) face_laurents = faces_in_laurent(triangulation, angle_structure, [], ZH) # empty list of cycles. if verbose > 0: print(("face_laurents", face_laurents)) ET_matrix = [] # now to find the tet coefficients relative to each edge for tet in triangulation.tetrahedra(): if verbose > 0: print(("tet_index", tet.index())) edge = tet_lower_upper_edges(tet, coorientations)[1] if verbose > 0: print(("edge_index", edge.index())) edge_colour = edge_colours[edge.index()] if verbose > 0: print(("edge_colour", edge_colour)) embeddings = list(edge.embeddings()) tet_coeffs = [ZH(0)] * triangulation.countTetrahedra() tet_coeffs[tet.index()] = 1 # bottom tet around the edge gets a 1 if verbose > 0: print(("initial tet_coeffs", tet_coeffs)) current_coeff = ZH(1) # find index of bottom embedding in the list of embedding for i, embed in enumerate(embeddings): tet = embed.tetrahedron() if verbose > 0: print(("current_tet", tet.index())) vert_perm = embed.vertices() trailing_vert_num, leading_vert_num = vert_perm[2], vert_perm[3] if (coorientations[tet.index()][trailing_vert_num] == +1 and coorientations[tet.index()][leading_vert_num] == +1): bottom_index = i break embeddings = embeddings[bottom_index:] + embeddings[:bottom_index] sign = -1 # we are going up the left side of the edge for embed in embeddings[1:]: # skipping the first tet = embed.tetrahedron() vert_perm = embed.vertices() trailing_vert_num, leading_vert_num = vert_perm[2], vert_perm[3] current_coeff = current_coeff * face_laurents[tet.face( 2, leading_vert_num).index()]**sign if (coorientations[tet.index()][trailing_vert_num] == -1 and coorientations[tet.index()][leading_vert_num] == -1): # we are the top embed so: tet_coeffs[ tet.index()] = tet_coeffs[tet.index()] - current_coeff sign = 1 # now we go down the right side elif ((edge_colour == "blue" and tet in red_tetrahedra) or (edge_colour == "red" and tet in blue_tetrahedra)): tet_coeffs[ tet.index()] = tet_coeffs[tet.index()] - current_coeff if verbose > 0: print(("current tet_coeffs", tet_coeffs)) ET_matrix.append(tet_coeffs) if normalisation == True: # convert and return return matrix_laurent_to_poly(ET_matrix, ZH, P) else: return Matrix(ET_matrix)
def search_Pachner_graph_for_shortest_path(start_isoSig, tri, angle, branch, name=None, search_depth=3, ceiling=5, drilled_cusp_index=None, check_property=False, property=None, save_dir=None): start_node = pachner_node(start_isoSig, tri, angle, branch, drilled_cusp_index=drilled_cusp_index, ceiling=ceiling) start_node.came_from = None big_dict_of_nodes = {start_isoSig: start_node} frontier_isoSigs = set([start_isoSig]) # print(len(big_dict_of_nodes), len(frontier_isoSigs)) for counter in range(search_depth): if len(frontier_isoSigs) == 0: #we are done... # print('done') break new_frontier_isoSigs = set([]) # for each element in the frontier check to see if it appears on the big_list_of_sigs if not we add it to the big list for cur_isoSig in frontier_isoSigs: current_node = big_dict_of_nodes[cur_isoSig] neighbour_isoSigs = current_node.all_neighbour_isoSigs() for nb_isoSig in neighbour_isoSigs: if not nb_isoSig in big_dict_of_nodes: nb_tri, nb_angle, nb_branch, nb_drilled_cusp_index = current_node.neighbour_moves_tri_angle_branch[ nb_isoSig] #print('nb drilled cusp', nb_drilled_cusp_index) new_node = pachner_node( nb_isoSig, nb_tri, nb_angle, nb_branch, drilled_cusp_index=nb_drilled_cusp_index, ceiling=ceiling) new_node.came_from = cur_isoSig if counter == search_depth - 1: #last layer new_node.is_frontier = True new_frontier_isoSigs.add(nb_isoSig) big_dict_of_nodes[nb_isoSig] = new_node if is_veering(nb_tri, nb_angle): print( 'veering!', isosig_from_tri_angle_branch( nb_tri, nb_angle, nb_branch)) upper_branch = upper_branched_surface( nb_tri, nb_angle, return_lower=False) lower_branch = upper_branched_surface( nb_tri, nb_angle, return_lower=True) print( 'upper:', isosig_from_tri_angle_branch( nb_tri, nb_angle, upper_branch)) print( 'lower:', isosig_from_tri_angle_branch( nb_tri, nb_angle, lower_branch)) print_path(nb_isoSig, big_dict_of_nodes) ## break return None frontier_isoSigs = new_frontier_isoSigs # print(len(big_dict_of_nodes), len(frontier_isoSigs)) print('did not find veering') return None
def is_edge_orientable(tri, angle, return_type="boolean"): """ checks to see if this veering triangulation is edge orientable. If return type is "tri angle" it returns the edge orientable double cover with its angle structure. Note that this is disconnected if and only if the given triangulation is edge orientable """ # return type can be "boolean", "veering_tet_vert_nums", or "tri angle" n = tri.countTetrahedra() veering_colours = is_veering(tri, angle, return_type="veering_colours") assert veering_colours != False # so we are veering tet_vert_coorientations = is_transverse_taut( tri, angle, return_type="tet_vert_coorientations") ### assumption: the first n tetrahedra have upper edge oriented according to Regina, the last n have it against Regina ### build our own model vertex numbering for each tetrahedron as follows: ### the top edge e is oriented by regina numbering, and gets vert_nums 1 and 2 in our ordering ### an equatorial edge e' of the same colour as e shares a vertex v with it. ### e and e' both point away from v or towards it. If away then the other end of e' is 3, ### else, the other end is 0 veering_tet_vert_nums = [ ] ### will populate with regina's vert nums, but our order. ### that is, veering_tet_vert_nums[1] and [2] will be the regina vert nums for the ends of the top edge for i in range(n): tet = tri.tetrahedron(i) veering_vert_nums = [None, None, None, None] top_vert_pair = get_tet_top_vert_nums(tet_vert_coorientations, i) # print(i, top_vert_pair) if not regina_edge_orientation_agrees(tet, top_vert_pair): top_vert_pair.reverse() assert regina_edge_orientation_agrees(tet, top_vert_pair) veering_vert_nums[1] = top_vert_pair[0] veering_vert_nums[2] = top_vert_pair[1] top_edge_num = vert_pair_to_edge_num[tuple(top_vert_pair)] top_edge_col = veering_colours[tet.edge(top_edge_num).index()] bottom_vert_pair = list(set(range(4)) - set(top_vert_pair)) bv, bv2 = bottom_vert_pair ## choose arbitrarily, now find which edge from the top vertices has same colour as bv for j, tv in enumerate(top_vert_pair): edge_col = veering_colours[tet.edge( vert_pair_to_edge_num[(bv, tv)]).index()] if edge_col == top_edge_col: if j == 0: ### bv shares an edge of same colour as top with tail of top edge veering_vert_nums[3] = bv veering_vert_nums[0] = bv2 else: ### bv shares an edge of same colour as top with head of top edge veering_vert_nums[0] = bv veering_vert_nums[3] = bv2 veering_tet_vert_nums.append(veering_vert_nums) # print('veering_tet_vert_nums', veering_tet_vert_nums) if return_type == "veering_tet_vert_nums": return veering_tet_vert_nums ### Now, when we glue two tetrahedra together along a face, the first of the three vertices in the veering_vert_num order ### on that tet's face glues to the first of the three vertices on the other tet's face, or to the third. ### depending on this, we go to the other part of the double cover, or not cover_tri = regina.Triangulation3() ## starts empty for i in range(2 * n): cover_tri.newTetrahedron() tet_faces = [] for i in range(n): for j in range(4): tet_faces.append((i, j)) while len(tet_faces) > 0: i, j = tet_faces.pop() tet = tri.tetrahedron(i) adjtet, adjgluing = tet.adjacentTetrahedron(j), tet.adjacentGluing(j) iN, jN = adjtet.index(), adjgluing[j] tet_faces.remove((iN, jN)) cover_tets = [cover_tri.tetrahedron(i), cover_tri.tetrahedron(i + n)] cover_tetsN = [ cover_tri.tetrahedron(iN), cover_tri.tetrahedron(iN + n) ] ### find the veering indices for the verts in the gluing on this tet and on adjtet face_veering_nums = veering_tet_vert_nums[i][:] face_veering_nums.remove(j) a, b, c = face_veering_nums neighbour_face_veering_nums = veering_tet_vert_nums[iN][:] neighbour_face_veering_nums.remove(jN) aN, bN, cN = neighbour_face_veering_nums assert adjgluing[b] == bN ### middles should match if adjgluing[a] == aN: ### veering orderings agree across the gluing assert adjgluing[c] == cN for k in range(2): cover_tets[k].join(j, cover_tetsN[k], adjgluing) else: ### veering orderings disagree across the gluing assert adjgluing[a] == cN and adjgluing[c] == aN for k in range(2): cover_tets[k].join(j, cover_tetsN[(k + 1) % 2], adjgluing) assert not cover_tri.hasBoundaryFacets() assert is_veering(cover_tri, angle + angle) if return_type == "boolean": return not cover_tri.isConnected( ) ### not connected if the original veering triangulation is edge orientable else: assert return_type == "tri angle" return cover_tri, angle + angle