示例#1
0
def test_basic():
    v1 = np.array([1, 1, 0])
    v2 = np.array([-1, 1, 0])
    look = vg.basis.z
    assert vg.signed_angle(v1, v2, look) == 90
    assert vg.signed_angle(v2, v1, look) == -90
    assert isinstance(vg.signed_angle(v1, v2, look), float)
示例#2
0
def preprocess_angle(y):

    temp = y[:, 4, :]
    temp = temp.reshape(-1, 25, 3)
    #temp = temp[:,5:,:]
    y = []
    for f in temp:
        #thumb
        thumb_v = f[4] - f[0]
        thumb_v = thumb_v / np.linalg.norm(thumb_v)
        f = f[5:, :]
        for i in range(4):  #index~pinky finger
            for j in range(1, 4):
                v1 = f[5 * i + j] - f[5 * i + j - 1]  #get previous bone vector
                v2 = f[5 * i + j + 1] - f[5 * i + j]  #get current bone vector
                if j == 1:  #MCP
                    #angle = vg.signed_angle(v1, v2, look=np.array([-1,0,0]))
                    angle = vg.signed_angle(v1, v2, look=np.array([0, -1, 0]))
                    y.append(angle)
                angle = vg.signed_angle(v1, v2, look=np.array([-1, 0, 0]))
                y.append(angle)
        for i in thumb_v:
            y.append(i)
    y = np.array(y).reshape(-1, 19)
    return y
示例#3
0
    def tilted(self, new_point, coplanar_point):
        """
        Create a new plane, tilted so it passes through `new_point`. Also
        specify a `coplanar_point` which the old and new planes should have
        in common.

        Args:
            new_point (np.arraylike): A point on the desired plane, with shape
                `(3,)`.
            coplanar_point (np.arraylike): The `(3,)` point which the old and
                new planes have in common.

        Returns:
            Plane: The adjusted plane.
        """
        vg.shape.check(locals(), "new_point", (3, ))
        vg.shape.check(locals(), "coplanar_point", (3, ))

        vector_along_old_plane = self.project_point(new_point) - coplanar_point
        vector_along_new_plane = new_point - coplanar_point
        axis_of_rotation = vg.perpendicular(vector_along_old_plane,
                                            self.normal)
        angle_between_vectors = vg.signed_angle(
            vector_along_old_plane,
            vector_along_new_plane,
            look=axis_of_rotation,
            units="rad",
        )
        new_normal = vg.rotate(
            self.normal,
            around_axis=axis_of_rotation,
            angle=angle_between_vectors,
            units="rad",
        )
        return Plane(point_on_plane=coplanar_point, unit_normal=new_normal)
示例#4
0
    def vertex_vector_orientations(self,
                                   units='degrees',
                                   return_distance=False):
        """Returns the angular orientations of each centroid-to-vertex vector.

        The orientation is defined by two angles, theta and phi. 
        Theta is the angle with respect to [ 0, 0, 1 ] and ranges from 0 to 180 degrees. 
        Phi is the angle with respect to [ 1, 0, 0 ] and ranges from -180 to +180 degrees.

        Args:
            units (:obj:`str`, optional): Optionally select the units for the calculated angles.
                                          Options are `degrees` or `radians`. 
                                          Default is `degrees`.
            return_distance (:obj:`bool`, optional): Optionally also return the distance. 

        Returns:
            (list(tuple)): A list of `(theta,phi)` tuple pairs.

        """
        vg_units = {'degrees': 'deg', 'radians': 'rad'}
        theta = [
            vg.angle(np.array([0.0, 0.0, 1.0]), point, units=vg_units[units])
            for point in self.vertex_vectors
        ]
        phi = [
            vg.signed_angle(np.array([1.0, 0.0, 0.0]),
                            point,
                            look=np.array([0.0, 0.0, 1.0]),
                            units=vg_units[units])
            for point in self.vertex_vectors
        ]
        if return_distance:
            distance = [vg.magnitude(point) for point in self.vertex_vectors]
            return list(zip(theta, phi, distance))
        return list(zip(theta, phi))
示例#5
0
文件: meye.py 项目: liorstov/mEye
def calculateHeading(frame, converted, carLength):
    if frame == 0 or frame >= maxFrames:
        return 0

    difference = getDiffConvertedFrames(frame - 1, frame, converted)
    """get front and rear points, assuming front has biggest dx"""
    front = difference.loc[abs(difference["dx"]).idxmax()]['pixel']
    rear = difference.loc[abs(difference["dx"]).idxmin()]['pixel']
    """check if bycicle model or simple motion with fix heading"""
    if (difference[["dx", "dz"]].round(3).nunique() == 1).all():
        """if fix heading return 0"""
        return 0
    """get vector of plane and normalise"""
    surface = getConvertedFramePixel(frame, front,
                                     converted) - getConvertedFramePixel(
                                         frame, rear, converted)
    """get vector of steer"""
    steer = getConvertedFramePixel(frame, front,
                                   converted) - getConvertedFramePixel(
                                       frame - 1, front, converted)
    """calculate delta while looking down in y axes"""
    delta = vg.signed_angle(surface, steer, np.array([0, 1, 0]), units="rad")
    """if steer angle is big it can also mean fix heading"""
    if (np.degrees(delta) > 80):
        """if fix heading return 0"""
        return 0
    """calculate velocity vector at rear assuming dt =1 s"""
    velo = math.sqrt(difference.loc[difference['pixel'] == rear]['dz']**2 +
                     difference.loc[difference['pixel'] == rear]['dx']**2) / dt
    """vehicle length"""
    """calculate heading according to bicycle model"""
    R = carLength / math.tan(delta)
    HeadingChange = velo / R

    return math.degrees(HeadingChange)
示例#6
0
def evaluate_point_normal(gts,preds):
    #diff = np.abs(gts-preds)
    pos = []
    norm = []
    ang = []
    for i in range(len(gts)):
        diff = gts[i]-preds[i]
        pos.append(diff[:3])
        norm.append(diff[3:])
        #angles = [np.arctan2(math.sqrt(diff[4]*diff[4]+diff[5]*diff[5]), diff[3]),
        #          np.arctan2(math.sqrt(diff[3]*diff[3]+diff[5]*diff[5]), diff[4]),
        #          np.arctan2(math.sqrt(diff[4]*diff[4]+diff[3]*diff[3]), diff[5])]
        angles = np.array([vg.signed_angle(np.array([diff[3],diff[4],diff[5]]),np.array([1,0,0]), look=vg.basis.y, units="deg"),
                           vg.signed_angle(np.array([diff[3],diff[4],diff[5]]),np.array([0,1,0]), look=vg.basis.z, units="deg"),
                           vg.signed_angle(np.array([diff[3],diff[4],diff[5]]),np.array([0,0,1]), look=vg.basis.x, units="deg")])
        ang.append(angles)

        '''
        gt_ang = np.array([vg.signed_angle(np.array([gts[i,3],gts[i,4],gts[i,5]]), np.array([1,0,0]), look=vg.basis.y, units="deg"),
                           vg.signed_angle(np.array([gts[i,3],gts[i,4],gts[i,5]]), np.array([0,1,0]), look=vg.basis.z, units="deg"),
                           vg.signed_angle(np.array([gts[i,3],gts[i,4],gts[i,5]]), np.array([0,0,1]), look=vg.basis.x, units="deg")])
        pred_ang = np.array([vg.signed_angle(np.array([preds[i,3],preds[i,4],preds[i,5]]), np.array([1,0,0]), look=vg.basis.y, units="deg"),
                             vg.signed_angle(np.array([preds[i,3],preds[i,4],preds[i,5]]), np.array([0,1,0]), look=vg.basis.z, units="deg"),
                             vg.signed_angle(np.array([preds[i,3],preds[i,4],preds[i,5]]) ,np.array([0,0,1]), look=vg.basis.x, units="deg")])
        ang.append(pred_ang-gt_ang)
        '''

    df = pd.DataFrame(np.concatenate((np.array(pos),np.array(norm)), axis = 1),columns=['dx', 'dy', 'dz','dnx', 'dny', 'dnz'])
    #print(df.describe())
    ax = sns.boxplot(data=df)
    ax.set_title('Absolute error compared to demo')
    ax.set_ylabel('[m]')
    plt.savefig('plots/pos_norm_err.png')
    #plt.show()

    ang_df = pd.DataFrame(np.array(ang),columns=['dax', 'day', 'daz'])
    #print(ang_df.describe())
    ax = sns.boxplot(data=ang_df)
    ax.set_title('Absolute error compared to demo')
    ax.set_ylabel('[deg]')
    plt.savefig('plots/ang_err.png')
    #plt.show()


    np.save("output/{}_pos_error".format("val"),np.array(pos))
    np.save("output/{}_norm_error".format("val"),np.array(norm))
示例#7
0
def angle(pos1, pos2, rot):
    v1 = np.array([0, 0, -1], np.float)
    v2 = pos1 - pos2
    angl = vg.signed_angle(v2, v1, look=vg.basis.y) + rot[0]

    if np.isnan(angl):
        return 0.0
    return -int(norm_angle(angl))
示例#8
0
def evaluate_point_normal(gts, preds):
    #diff = np.abs(gts-preds)
    pos = []
    ang = []
    for i in range(len(gts)):
        diff = gts[i] - preds[i]
        pos.append(diff[:3])
        #angles = [np.arctan2(math.sqrt(diff[4]*diff[4]+diff[5]*diff[5]), diff[3]),
        #          np.arctan2(math.sqrt(diff[3]*diff[3]+diff[5]*diff[5]), diff[4]),
        #          np.arctan2(math.sqrt(diff[4]*diff[4]+diff[3]*diff[3]), diff[5])]
        angles = [
            vg.signed_angle(np.array([diff[3], diff[4], diff[5]]),
                            np.array([1, 0, 0]),
                            look=vg.basis.y,
                            units="deg"),
            vg.signed_angle(np.array([diff[3], diff[4], diff[5]]),
                            np.array([0, 1, 0]),
                            look=vg.basis.z,
                            units="deg"),
            vg.signed_angle(np.array([diff[3], diff[4], diff[5]]),
                            np.array([0, 0, 1]),
                            look=vg.basis.x,
                            units="deg")
        ]
        ang.append(angles)
    # Creates two subplots and unpacks the output array immediately
    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))

    ax1 = sns.boxplot(data=pd.DataFrame(np.array(pos),
                                        columns=['dx', 'dy', 'dz']),
                      ax=ax1)
    ax1.set_title('Absolute error compared to demo')
    ax1.set_ylabel('[m]')

    ax2 = sns.boxplot(data=pd.DataFrame(np.array(ang),
                                        columns=['ax', 'ay', 'az']),
                      ax=ax2)
    ax2.set_title('Absolute error compared to demo')
    ax2.set_ylabel('[deg]')

    plt.tight_layout()
    plt.savefig('plots/pose_error.png')
def evaluate_point_normals(gts, preds):
    pos, dist, norm, ang = [], [], [], []
    idx = 0
    for gt, pred in zip(gts, preds):
        # numeric differences
        diff = gt - pred
        pos.append(diff[:3])
        dist.append(np.linalg.norm(diff[:3]))
        norm.append(diff[3:])

        # angle difference
        angles = [
            vg.signed_angle(gt[3:], pred[3:], look=vg.basis.y, units="deg"),
            vg.signed_angle(gt[3:], pred[3:], look=vg.basis.z, units="deg"),
            vg.signed_angle(gt[3:], pred[3:], look=vg.basis.x, units="deg"),
            vg.angle(gt[3:], pred[3:], units="deg")
        ]
        ang.append(angles)
        idx += 1
    return np.array(pos), np.array(dist), np.array(norm), np.array(ang)
示例#10
0
文件: meye.py 项目: liorstov/mEye
def calculatYawFromWorld(frame):
    """calculate Yaw"""
    distances = squareform(
        pdist(world.loc[world["Frame"] == frame].to_numpy()[:, 1:4]))
    points = np.where(distances == np.max(distances))
    surface = getWorldFramePixel(frame, points[0][1]) - getWorldFramePixel(
        frame, points[0][0])
    """calculate angle to Z axes"""
    return vg.signed_angle(np.array([0, 0, 1]),
                           surface,
                           np.array([0, 1, 0]),
                           units="deg")
示例#11
0
    def calcDistance(self):
        if self.isMove == True:
            if self.isLinear == True: #find the linear distance between points
                self.distance = round(math.sqrt((self.endPoint.x-self.startPoint.x)**2+(self.endPoint.y-self.startPoint.y)**2+(self.endPoint.z-self.startPoint.z)**2), 4)
            elif self.isIJKArc == True: #find the arc distance using IJK
                #boop the coordinates into vectors
                if self.g == 2: #G02 is clockwise
                    vec2 = numpy.array([self.startPoint.x - self.i, self.startPoint.y - self.j, self.startPoint.z - self.k])
                    vec1 = numpy.array([self.endPoint.x - self.i, self.endPoint.y - self.j, self.endPoint.z - self.k])
                else: #counterclockwise
                    vec1 = numpy.array([self.startPoint.x - self.i, self.startPoint.y - self.j, self.startPoint.z - self.k])
                    vec2 = numpy.array([self.endPoint.x - self.i, self.endPoint.y - self.j, self.endPoint.z - self.k])

                #find the radius
                #Old: radius = round(math.sqrt((self.endPoint.x - self.i)**2 + (self.endPoint.y - self.j)**2 + (self.endPoint.z - self.k)**2), 4)
                #need to figure out the center point instead of the offset
                radius = round(math.sqrt((self.endPoint.x - self.startPoint.x - self.i)**2 + (self.endPoint.y - self.startPoint.y - self.j)**2 + (self.endPoint.z - self.startPoint.z - self.k)**2), 4)

                if self.startPoint == self.endPoint: #this is a complete circle
                    self.distance = round(2*numpy.pi*radius, 4)
                else:
                    #calculate the angle based on the plane
                    if self.plane == 'XY':
                        angle = vg.signed_angle(vec1, vec2, look=vg.basis.z)
                    elif self.plane == 'ZX':
                        angle = vg.signed_angle(vec1, vec2, look=vg.basis.y)
                    elif self.plane == 'YZ':
                        angle = vg.signed_angle(vec1, vec2, look=vg.basis.x)

                    #negative angle indicates obtuse
                    if angle < 0:
                        angle += 360
                    self.distance = round(2*numpy.pi*radius*(angle/360),4)
            else: #find the arc distance using R (not implemented yet)
                pass

        else:
            self.distance = None
示例#12
0
def vec2azel(ref, type='y', units="deg"):
    ref = np.array(ref)

    if type == 'y':
        a = vg.signed_angle(ref, vg.basis.x, look=vg.basis.z, units=units)
        e = vg.signed_angle(ref, vg.basis.y, look=vg.basis.x, units=units)
    elif type == 'z':
        a = vg.signed_angle(ref, vg.basis.x, look=vg.basis.y, units=units)
        e = vg.signed_angle(ref, vg.basis.z, look=vg.basis.x, units=units)
    else:
        a = vg.signed_angle(ref, vg.basis.z, look=vg.basis.y, units=units)
        e = vg.signed_angle(ref, vg.basis.x, look=vg.basis.z, units=units)
    print('azimuth = ' + str(a) + ', elevation = ' + str(e))
    return -a, -e
示例#13
0
    def angle_between(self, other: "Vector", normal: "Vector" = None) -> float:
        """Get the angle between this vector & another

        This is the angle necessary to rotate this vector into alignment with
        the other vector, about the normal

        Note:
            If the vectors are antiparallel, 180.0 will be arbitrarily returned
            (as -180.0 would be equally correct).

        Args:
            other: The other angle, to which to calculate the angle
            normal: An optional, specified normal; if not privided, the
                cross product between this vector & the other vector will be
                used (which will ensure that the result is positive)
        """
        try:
            return vg.signed_angle(self.array,
                                   other.array,
                                   look=(normal or self.normal(other)).array)
        except NoNormalForParallels:
            return 0.0
        except NoNormalForAntiparallels:
            return 180.0
示例#14
0
文件: NEWTIP.py 项目: mkalin1/p1
ang_dist=()
tl=[]
name=[]
Data={}

for i in mol[0].get_residues():
    for j in mol[0].get_residues():

        if(i.get_id() < j.get_id() and i.get_name() not in restricted_res and j.get_name() not in restricted_res):
            
            res1_vec=i.get_calpha().get_location() - i.get_tip().get_location()
            res2_vec=j.get_calpha().get_location() - j.get_tip().get_location()
            #name.append(i.get_name() + '-' + j.get_name())
            #name1=i.get_name() + '-' + j.get_name()
            #angle=np.arccos(np.dot(res1_vec,res2_vec)/(np.linalg.norm(res1_vec)*np.linalg.norm(res2_vec)))
            angle=vg.signed_angle(res1_vec,res2_vec,look=vg.basis.z)
            if angle<0:
               angle=angle+360

            res1 = i.get_tip().get_location()
            #print(res1)
            res2 = j.get_tip().get_location()
            #print(res2)
            
            distmin=np.linalg.norm(res1-res2) 
            
            #if distmin > 13:    
                #print(i.get_id(), j.get_id(), distmin)
            key=sorted([i.get_name(),j.get_name()])
            
示例#15
0
def process_a_split(data_dir,
                    target_data_dir,
                    split_file_path,
                    bev_bnds,
                    bev_meter_per_pixel,
                    bev_wanted_classes,
                    offset=0):
    """
    Args:
        data_dir: directory that contains data corresponding to A SPECIFIC
            SPLIT (train, validation, test)
        target_data_dir: the dir to write to. Contains data corresponding to
            A SPECIFIC SPLIT in KITTI (training, testing)
        split_file_path: location to write all the sample_idx of a split
        bev_bnds: [4] containing [x_min, x_max, y_min, y_max] in meter for the bev
        bev_meter_per_pixel: number of meters in a pixel in bev, most often fractional
        bev_wanted_classes: [VEHICLE, BICYCLIST, PEDESTRIAN, ...] the classes to be
            for bev
        offset: first sample_idx to start counting from, needed to differentiate
            training and validation sample_idx because in KITTI they are under
            the same dir
    """
    print("Processing", data_dir)

    target_velodyne_dir = os.path.join(target_data_dir, 'velodyne')
    target_velodyne_reduced_dir = os.path.join(target_data_dir,
                                               'velodyne_reduced')
    target_calib_dir = os.path.join(target_data_dir, 'calib')
    target_image_2_dir = os.path.join(target_data_dir, 'image_2')
    if 'test' not in split_file_path:
        target_label_2_dir = os.path.join(target_data_dir, 'label_2')

    os.makedirs(target_velodyne_dir, exist_ok=True)
    os.makedirs(target_velodyne_reduced_dir, exist_ok=True)
    os.makedirs(target_calib_dir, exist_ok=True)
    os.makedirs(target_image_2_dir, exist_ok=True)
    if 'test' not in split_file_path:
        os.makedirs(target_label_2_dir, exist_ok=True)

    ############################## for saving BEV segmentation masks paths
    target_bev_drivable_dir = os.path.join(target_data_dir, 'bev_DRIVABLE')
    os.makedirs(target_bev_drivable_dir, exist_ok=True)

    target_bev_fov_dir = os.path.join(target_data_dir, 'bev_FOV')
    os.makedirs(target_bev_fov_dir, exist_ok=True)

    target_bev_cls_dirs = []
    for wanted_cls in bev_wanted_classes:
        target_bev_cls_dir = os.path.join(target_data_dir,
                                          'bev_{}'.format(wanted_cls))
        os.makedirs(target_bev_cls_dir, exist_ok=True)
        target_bev_cls_dirs.append(target_bev_cls_dir)
    ############################## end for saving BEV segmentation masks paths

    # Check the number of logs, defined as one continuous trajectory
    argoverse_loader = ArgoverseTrackingLoader(data_dir)
    print('Total number of logs:', len(argoverse_loader))
    argoverse_loader.print_all()
    print('\n')

    cams = [
        'ring_front_center', 'ring_front_left', 'ring_front_right',
        'ring_rear_left', 'ring_rear_right', 'ring_side_left',
        'ring_side_right'
    ]

    # count total number of files
    total_number = 0
    for q in argoverse_loader.log_list:
        log_lidar_path = os.path.join(data_dir, q, 'lidar')
        path, dirs, files = next(os.walk(log_lidar_path))
        total_number = total_number + len(files)

    total_number = total_number * len(cams)

    print('Now write sample indices to split file.')
    write_split_file(split_file_path, offset, total_number)

    bar = progressbar.ProgressBar(maxval=total_number, \
                                  widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()])

    print('Total number of files: {}. Translation starts...'.format(
        total_number))
    print('Progress:')
    bar.start()

    i = 0
    kitti_to_argo_mapping = {}
    for log_id in sorted(argoverse_loader.log_list):
        argoverse_data = argoverse_loader.get(log_id)
        from argoverse.map_representation.map_api import ArgoverseMap
        argoverse_map = ArgoverseMap()
        for cam in cams:

            ############################## Calibration for this whole log ##############################
            log_calib_path = os.path.join(data_dir, log_id,
                                          'vehicle_calibration_info.json')
            calibration_data = calibration.load_calib(log_calib_path)[cam]
            calib_file_content = construct_calib_str(calibration_data,
                                                     pts_in_cam_ego_coord=True)

            log_lidar_dir = os.path.join(data_dir, log_id, 'lidar')

            # Loop through the each lidar frame (10Hz) to rename, copy, and adapt
            # all images, lidars, calibration files, and label files.
            for frame_idx, timestamp in enumerate(
                    sorted(argoverse_data.lidar_timestamp_list)):

                idx = str(i + offset).zfill(9)

                # recording the mapping from kitti to argo
                # (log index, the lidar frame index) uniquely identify a sample
                kitti_to_argo_mapping[idx] = (log_id, frame_idx)

                i += 1
                if i < total_number:
                    bar.update(i + 1)

                ############################## Lidar ##############################

                # Save lidar file into .bin format under the new directory
                lidar_file_path = os.path.join(
                    log_lidar_dir, 'PC_{}.ply'.format(str(timestamp)))
                target_lidar_file_path = os.path.join(target_velodyne_dir,
                                                      idx + '.bin')

                lidar_data = load_ply(lidar_file_path)

                # run this block of code only if we are using the cam coord instead of the ego coord
                if True:
                    in_cam_coord = calibration_data.project_ego_to_cam(
                        lidar_data)
                    in_cam_coord = in_cam_coord[:, [2, 0,
                                                    1]]  # tranpose the xyz
                    in_cam_coord[:, [1, 2]] *= -1  # flip 2 of the axes
                    lidar_data = in_cam_coord

                lidar_data_augmented = np.concatenate(
                    (lidar_data, np.zeros([lidar_data.shape[0], 1])), axis=1)
                lidar_data_augmented = lidar_data_augmented.astype('float32')
                lidar_data_augmented.tofile(target_lidar_file_path)

                ############################## Image ##############################

                # Save the image file into .png format under the new directory
                cam_file_path = argoverse_data.image_list_sync[cam][frame_idx]
                target_cam_file_path = os.path.join(target_image_2_dir,
                                                    idx + '.png')
                copyfile(cam_file_path, target_cam_file_path)

                target_calib_file_path = os.path.join(target_calib_dir,
                                                      idx + '.txt')
                file = open(target_calib_file_path, 'w+')
                file.write(calib_file_content)
                file.close()

                ############################## BEV binary masks ##############################
                bev_drivable_save_path = os.path.join(target_bev_drivable_dir,
                                                      idx + '.png')
                bev_wanted_save_paths = [
                    os.path.join(cls_dir, idx + '.png')
                    for cls_dir in target_bev_cls_dirs
                ]
                bev_fov_save_path = os.path.join(target_bev_fov_dir,
                                                 idx + '.png')

                get_bev(argoverse_data,
                        argoverse_map,
                        log_id,
                        frame_idx,
                        bev_bnds,
                        bev_meter_per_pixel,
                        bev_drivable_save_path,
                        bev_wanted_classes,
                        bev_wanted_save_paths,
                        bev_fov_save_path,
                        visualize=False,
                        camera_calib=calibration_data)

                ############################## Labels ##############################

                if 'test' in split_file_path:
                    continue
                label_object_list = argoverse_data.get_label_object(frame_idx)
                target_label_2_file_path = os.path.join(
                    target_label_2_dir, idx + '.txt')
                file = open(target_label_2_file_path, 'w+')

                # DontCare objects must appear at the end as per KITTI label files
                object_lines = []
                dontcare_lines = []

                for detected_object in label_object_list:
                    classes = detected_object.label_class
                    classes = OBJ_CLASS_MAPPING_DICT[
                        classes]  # map class type from artoverse to KITTI
                    occulusion = round(detected_object.occlusion / 25)
                    height = detected_object.height
                    length = detected_object.length
                    width = detected_object.width
                    truncated = 0

                    center = detected_object.translation  # in ego frame

                    corners_ego_frame = detected_object.as_3d_bbox(
                    )  # all eight points in ego frame
                    corners_cam_frame = calibration_data.project_ego_to_cam(
                        corners_ego_frame
                    )  # all eight points in the camera frame
                    image_corners = calibration_data.project_ego_to_image(
                        corners_ego_frame)
                    image_bbox = [
                        min(image_corners[:, 0]),
                        min(image_corners[:, 1]),
                        max(image_corners[:, 0]),
                        max(image_corners[:, 1])
                    ]
                    # the four coordinates we need for KITTI
                    image_bbox = [round(x) for x in image_bbox]

                    center_cam_frame = calibration_data.project_ego_to_cam(
                        np.array([center]))

                    # if 0 < center_cam_frame[0][2] < max_d and 0 < image_bbox[0] < 1920 and 0 < image_bbox[1] < 1200 and 0 < \
                    #     image_bbox[2] < 1920 and 0 < image_bbox[3] < 1200:
                    if True:
                        # the center coordinates in cam frame we need for KITTI

                        # for the orientation, we choose point 1 and point 5 for application
                        p1 = corners_cam_frame[1]
                        p5 = corners_cam_frame[5]
                        # dz = p1[2] - p5[2]
                        # dx = p1[0] - p5[0]
                        # angle = math.atan2(dz, dx)

                        angle_vec = p1 - p5
                        # norm vec along the x axis, points to the right in KITTI cam rect coordinate
                        origin_vec = np.array([1, 0, 0])
                        import vg
                        angle = vg.signed_angle(origin_vec,
                                                angle_vec,
                                                look=vg.basis.y,
                                                units='rad')

                        # the orientation angle of the car
                        beta = math.atan2(center_cam_frame[0][2],
                                          center_cam_frame[0][0])
                        alpha = angle + beta - math.pi / 2
                        line = classes + ' {} {} {} {} {} {} {} {} {} {} {} {} {} {} \n'.format(
                            round(truncated, 2), occulusion, round(alpha, 2),
                            round(image_bbox[0], 2), round(image_bbox[1], 2),
                            round(image_bbox[2], 2), round(image_bbox[3], 2),
                            round(height, 2), round(width, 2), round(
                                length, 2), round(center_cam_frame[0][0], 2),
                            round(center_cam_frame[0][1], 2) + height / 2,
                            round(center_cam_frame[0][2], 2), round(angle, 2))

                        # separate the object lines so we can move all the dontcare lines at the end
                        if classes == DONT_CARE:
                            dontcare_lines.append(line)
                        else:
                            object_lines.append(line)

                for line in object_lines:
                    file.write(line)
                for line in dontcare_lines:
                    file.write(line)
                file.close()

    # write kitti_to_argo_mapping to a file
    split_dir = os.path.dirname(split_file_path)
    split_name = os.path.basename(split_file_path)
    split_name = os.path.splitext(split_name)[0]
    prefix = 'kitti_to_argo_mapping'
    kitti_to_argo_mapping_path = os.path.join(
        split_dir, "{}_{}.json".format(prefix, split_name))
    file_handle = open(kitti_to_argo_mapping_path, 'w')
    json.dump(kitti_to_argo_mapping, file_handle)
    file_handle.close()

    bar.finish()
    print('Translation finished, processed {} files'.format(i))
示例#16
0
def main():
    # Nombre de cycle nécessaire pour envoyer un message (1 msg/4 cycles)
    PERIODICITY = 4
    cycles_without_sending = 0  # variable indiquant le cycle actuel

    # précompilation du regex, indication des motifs de mots à enlever
    regex = re.compile(r"prepro.*")
    last_angles = []
    while True:
        line = sys.stdin.readline()  # Lis ligne dans le pipelin stdin
        line = regex.sub(
            "", line
        )  # enlève les motifs de mot prédeterminés de la string par substitution

        # si on a plus d'entrée
        if not line:
            break  # on sort de la boucle while (fin du programme)

        # si on a que des espaces blanc
        if line.isspace() or "[]" in line:
            continue  # on passe à la prochaine itération

        givenArray = literal_eval(line)[0][
            'coordinates']  # on extirpe seulement la liste les coordonnées de la string

        if len(givenArray) < 3:
            sys.stdout.write(repr(givenArray))
            sys.stdout.flush()
            continue

        # Extrait les coordonnées des 3 joints du bras gauche
        # a, b, c = np.array((givenArray[6],givenArray[8],givenArray[10]))

        # Extrait les coordonnées des 3 joints du bras droit
        a, b, c = np.array((givenArray[5], givenArray[7], givenArray[9]))

        # Vectors
        ab = b - a
        bc = c - b
        # Get angles on the 2D plane by projecting on it (z is the normal here)
        # TODO: Change when dealing with 3d later
        if np.any(ab != 0):
            angle1 = vg.signed_angle(ab, np.array((1, 0, 0)), vg.basis.neg_z)
        else:
            angle1 = math.nan
        if np.any(bc != 0):
            angle2 = vg.signed_angle(bc, np.array((1, 0, 0)), vg.basis.neg_z)
        else:
            angle2 = math.nan

        # met a jour la liste de tous les angles calculés depuis la dernière période
        last_angles = update_liste_angles(last_angles, [angle1, angle2],
                                          PERIODICITY)
        # on incrémente le compteur de cycle sans message
        cycles_without_sending += 1
        # si le compteur de cycle correspond à n période
        if cycles_without_sending % PERIODICITY == 0:
            cycles_without_sending = 0  # on remet le compte à 0 pour ne pas dépasser la valeur max du type
            # calcule les angles avec la moyenne mobile
            angles_to_send = moyenne_mobile(last_angles)
            output_str = str(angles_to_send[0]) + " " + str(
                angles_to_send[1]) + "\n"

            # envoi l'information au prochain dans std out
            sys.stdout.write(output_str)
            sys.stdout.flush(
            )  # force l'écriture en .vitant le buffering (pratique pour python2.7)
示例#17
0
def test_stacked_basic():
    v1 = np.array([[1, 1, 0], [1, 1, 0]])
    v2 = np.array([[-1, 1, 0], [-1, -1, 0]])
    look = vg.basis.z
    np.testing.assert_array_almost_equal(vg.signed_angle(v2, v1, look),
                                         np.array([-90, 180]))
示例#18
0
def angle(v1, v2):
    if v1.shape[0] == 2:
        v1 = np.append(v1, 0)
    if v2.shape[0] == 2:
        v2 = np.append(v2, 0)
    return vg.signed_angle(v1, v2, look=vg.basis.z, units='rad')