def transform_test_2(): return Compose([ T.ToFloatTensorInZeroOne(), T.Resize((128, 228)), normalize, #T.CenterCrop((112, 112)) ])
def transform_train_optical_flow(): return Compose([ T.transform_optical_flow_raw, T.Resize((128, 228)), T.RandomHorizontalFlip(), T.RandomCrop((112, 112)) ])
def transform_train_reference(): return Compose([ T.ToFloatTensorInZeroOne(), T.Resize((128, 171)), T.RandomHorizontalFlip(), normalize, T.RandomCrop((112, 112)) ])
def transform_train_3(): return Compose([ T.ToFloatTensorInZeroOne(), T.Resize((128, 228)), T.RandomHorizontalFlip(), normalize, T.RandomCrop((112, 160)) ])
''' Here we assume video have been resized to value appearing in T.Resize. ''' import torchvision import video_yyz.transforms as T from torchvision import get_video_backend video_backend = get_video_backend() normalize = T.Normalize(mean=[0.43216, 0.394666, 0.37645], std=[0.22803, 0.22145, 0.216989]) transform_train = torchvision.transforms.Compose([ T.ToFloatTensorInZeroOne(), T.Resize((128, 228)), T.RandomHorizontalFlip(), normalize, T.RandomCrop((112, 112)) ]) transform_test = torchvision.transforms.Compose([ T.ToFloatTensorInZeroOne(), T.Resize((128, 228)), normalize, T.CenterCrop((112, 112)) ])
def transform_test_optical_flow(): return Compose([ T.transform_optical_flow_raw, T.Resize((128, 228)), T.CenterCrop((112, 112)) ])
def transform_test_1_right(): return Compose([ T.ToFloatTensorInZeroOne(), T.Resize((128, 228)), normalize, T.RightCrop((112, 112)) ])
def transform_test_reference(): return Compose([ T.ToFloatTensorInZeroOne(), T.Resize((128, 171)), normalize, T.CenterCrop((112, 112)) ])
''' Provide some reference "objects" Code in this folder should not be "imported". Copy & paste is preferred until proper abstraction for them are found. ''' import torchvision import video_yyz.transforms as T from torchvision import get_video_backend video_backend = get_video_backend() normalize = T.Normalize(mean=[0.43216, 0.394666, 0.37645], std=[0.22803, 0.22145, 0.216989]) transform_train = torchvision.transforms.Compose([ T.ToFloatTensorInZeroOne(), T.Resize((128, 171)), T.RandomHorizontalFlip(), normalize, T.RandomCrop((112, 112)) ]) transform_test = torchvision.transforms.Compose([ T.ToFloatTensorInZeroOne(), T.Resize((128, 171)), normalize, T.CenterCrop((112, 112)) ])